1
|
Clark PJ, Brodnik ZD, España RA. Chemogenetic Signaling in Space and Time: Considerations for Designing Neuroscience Experiments Using DREADDs. Neuroscientist 2024; 30:328-346. [PMID: 36408535 DOI: 10.1177/10738584221134587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The use of designer receptors exclusively activated by designer drugs (DREADDs) has led to significant advances in our understanding of the neural circuits that govern behavior. By allowing selective control over cellular activity and signaling, DREADDs have become an integral tool for defining the pathways and cellular phenotypes that regulate sleep, pain, motor activity, goal-directed behaviors, and a variety of other processes. In this review, we provide a brief overview of DREADDs and discuss notable discoveries in the neurosciences with an emphasis on circuit mechanisms. We then highlight methodological approaches to achieve pathway specific activation of DREADDs. Finally, we discuss spatial and temporal constraints of DREADDs signaling and how these features can be incorporated into experimental designs to precisely dissect circuits of interest.
Collapse
Affiliation(s)
- Philip J Clark
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Zachary D Brodnik
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Chen L, Liu C, Xue Y, Chen XY. Several neuropeptides involved in parkinsonian neuroprotection modulate the firing properties of nigral dopaminergic neurons. Neuropeptides 2023; 99:102337. [PMID: 37087783 DOI: 10.1016/j.npep.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. The surviving nigral dopaminergic neurons display altered spontaneous firing activity in Parkinson's disease. The firing rate of nigral dopaminergic neurons decreases long before complete neuronal death and the appearance of parkinsonian symptoms. A mild stimulation could rescue dopaminergic neurons from death and in turn play neuroprotective effects. Several neuropeptides, including cholecystokinin (CCK), ghrelin, neurotensin, orexin, tachykinins and apelin, within the substantia nigra pars compacta play important roles in the modulation of spontaneous firing activity of dopaminergic neurons and therefore involve motor control and motor disorders. Here, we review neuropeptide-induced modulation of the firing properties of nigral dopaminergic neurons. This review may provide a background to guide further investigations into the involvement of neuropeptides in movement control by modulating firing activity of nigral dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Soden ME, Yee JX, Cuevas B, Rastani A, Elum J, Zweifel LS. Distinct Encoding of Reward and Aversion by Peptidergic BNST Inputs to the VTA. Front Neural Circuits 2022; 16:918839. [PMID: 35860212 PMCID: PMC9289195 DOI: 10.3389/fncir.2022.918839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides play an important role in modulating mesolimbic system function. However, while synaptic inputs to the ventral tegmental area (VTA) have been extensively mapped, the sources of many neuropeptides are not well resolved. Here, we mapped the anatomical locations of three neuropeptide inputs to the VTA: neurotensin (NTS), corticotrophin releasing factor (CRF), and neurokinin B (NkB). Among numerous labeled inputs we identified the bed nucleus of the stria terminalis (BNST) as a major source of all three peptides, containing similar numbers of NTS, CRF, and NkB VTA projection neurons. Approximately 50% of BNST to VTA inputs co-expressed two or more of the peptides examined. Consistent with this expression pattern, analysis of calcium dynamics in the terminals of these inputs in the VTA revealed both common and distinct patterns of activation during appetitive and aversive conditioning. These data demonstrate additional diversification of the mesolimbic dopamine system through partially overlapping neuropeptidergic inputs.
Collapse
Affiliation(s)
- Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Joshua X. Yee
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Beatriz Cuevas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Ariana Rastani
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jordan Elum
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Al Abed AS, Reynolds NJ, Dehorter N. A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biol Psychiatry 2021; 90:156-164. [PMID: 33867115 DOI: 10.1016/j.biopsych.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Despite promising advances in basic research of the neurokinin B/Tac2 pathway in both animals and humans, clinical applications are yet to be implemented. This is likely because of our limited understanding of the action of the pathway in the brain. While this system controls neuronal activity in multiple regions, the precise impact of Tac2-induced cellular responses on behavior remains unclear. Recently, elegant studies revealed a key contribution to stress-related behaviors and memory. Here, we discuss the crucial importance of bridging the gap between the Tac2 pathway's involvement in cell physiology and cognition to comprehend its role in health and disease. We propose that a better understanding of the Tac2 pathway in the brain could provide an essential perspective for basic investigations, which in turn will feed clinical research.
Collapse
Affiliation(s)
- A Shaam Al Abed
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathan J Reynolds
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
5
|
Chemogenetic Manipulation of Dopamine Neurons Dictates Cocaine Potency at Distal Dopamine Transporters. J Neurosci 2020; 40:8767-8779. [PMID: 33046544 DOI: 10.1523/jneurosci.0894-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
The reinforcing efficacy of cocaine is largely determined by its capacity to inhibit the dopamine transporter (DAT), and emerging evidence suggests that differences in cocaine potency are linked to several symptoms of cocaine use disorder. Despite this evidence, the neural processes that govern cocaine potency in vivo remain unclear. In male rats, we used chemogenetics with intra-VTA microinfusions of the agonist clozapine-n-oxide to bidirectionally modulate dopamine neurons. Using ex vivo fast scan cyclic voltammetry, pharmacological probes of the DAT, biochemical assessments of DAT membrane availability and phosphorylation, and cocaine self-administration, we tested the effects of chemogenetic manipulations on cocaine potency at distal DATs in the nucleus accumbens as well as the behavioral economics of cocaine self-administration. We discovered that chemogenetic manipulation of dopamine neurons produced rapid, bidirectional modulation of cocaine potency at DATs in the nucleus accumbens. We then provided evidence that changes in cocaine potency are associated with alterations in DAT affinity for cocaine and demonstrated that this change in affinity coincides with DAT conformation biases and changes in DAT phosphorylation state. Finally, we showed that chemogenetic manipulation of dopamine neurons alters cocaine consumption in a manner consistent with changes in cocaine potency at distal DATs. Based on the spatial and temporal constraints inherent to our experimental design, we posit that changes in cocaine potency are driven by alterations in dopamine neuron activity. When considered together, these observations provide a novel mechanism through which GPCRs regulate cocaine's pharmacological and behavioral effects.SIGNIFICANCE STATEMENT Differences in the pharmacological effects of cocaine are believed to influence the development and progression of cocaine use disorder. However, the biological and physiological processes that determine sensitivity to cocaine remain unclear. In this work, we use a combination of chemogenetics, fast scan cyclic voltammetry, pharmacology, biochemistry, and cocaine self-administration with economic demand analysis to demonstrate a novel mechanism by which cocaine potency is determined in vivo These studies identify a novel process by which the pharmacodynamics of cocaine are derived in vivo, and thus this work has widespread implications for understanding the mechanisms that regulate cocaine consumption across stages of addiction.
Collapse
|
6
|
Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C, Palmiter RD, Soden ME, Zweifel LS. Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement. Neuron 2020; 105:909-920.e5. [PMID: 31879163 PMCID: PMC7060117 DOI: 10.1016/j.neuron.2019.11.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 05/07/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Dopamine neurons of the ventral tegmental area (VTA) regulate reward association and motivation. It remains unclear whether there are distinct dopamine populations to mediate these functions. Using mouse genetics, we isolated two populations of dopamine-producing VTA neurons with divergent projections to the nucleus accumbens (NAc) core and shell. Inhibition of VTA-core-projecting neurons disrupted Pavlovian reward learning, and activation of these cells promoted the acquisition of an instrumental response. VTA-shell-projecting neurons did not regulate Pavlovian reward learning and could not facilitate acquisition of an instrumental response, but their activation could drive robust responding in a previously learned instrumental task. Both populations are activated simultaneously by cues, actions, and rewards, and this co-activation is required for robust reinforcement of behavior. Thus, there are functionally distinct dopamine populations in the VTA for promoting motivation and reward association, which operate on the same timescale to optimize behavioral reinforcement.
Collapse
Affiliation(s)
- Gabriel Heymann
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Yong Sang Jo
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA.,Department of Psychology, Korea University, Seoul 02841, Republic of Korea
| | - Kathryn L. Reichard
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Naomi McFarland
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Charles Chavkin
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D. Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S. Zweifel
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA.,Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.,correspondence:
| |
Collapse
|
7
|
Mapping the binding pocket of a novel, high-affinity, slow dissociating tachykinin NK3 receptor antagonist: biochemical and electrophysiological characterization. Neuropharmacology 2014; 86:259-72. [PMID: 25107588 DOI: 10.1016/j.neuropharm.2014.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022]
Abstract
The NK3 receptor is a GPCR that is prominently expressed in limbic areas of the brain, many of which have been implicated in schizophrenia. Phase II clinical trials in schizophrenia with two selective NK3 antagonists (osanetant and talnetant) have demonstrated significant improvement in positive symptoms. The objective of this study was to characterize the properties of a novel dual NK2/NK3 antagonist, RO5328673. [(3)H]RO5328673 bound to a single saturable site on hNK2, hNK3 and gpNK3 with high-affinity. RO5328673 acted as an insurmountable antagonist at both human and guinea-pig NK3 receptors in the [(3)H]IP accumulation assay. In binding kinetic analyses, [(3)H]RO5328673 had fast association and dissociation rates at hNK2 while it had a fast association rate and a remarkably slow dissociation rate at gp and hNK3. In electrophysiological recordings of gp SNpc, RO5328673 inhibited the senktide-induced potentiation of spontaneous activity of dopaminergic neurons with an insurmountable mechanism of action. RO5328673 exhibited in-vivo activity in gerbils, robustly reversing the senktide-induced locomotor activity. The TM2 residue gpNK3-A114(2.58) (threonine in all other species) was identified as the critical residue for the RO5328673's slower dissociation kinetics and stronger insurmountable mode of antagonism in the guinea-pig as compared to hNK3-T139(2.58). Using site-directed mutagenesis, [(3)H]RO5328673 binding and rhodopsin-based modeling, the important molecular determinants of the RO5328673-binding pocket of hNK3 were determined. A comparison of the RO5328673-binding pocket with that of osanetant showed that two antagonists have similar contact sides on hNK3 binding crevice except for three mutations V95L(1.42), Y247W(5.38), V255I(5.46), which behaved differently between interacting modes of two antagonists in hNK3.
Collapse
|
8
|
Species differences in somatodendritic dopamine transmission determine D2-autoreceptor-mediated inhibition of ventral tegmental area neuron firing. J Neurosci 2012; 32:13520-8. [PMID: 23015441 DOI: 10.1523/jneurosci.2745-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta activates inhibitory postsynaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and resulting dopamine D2-autoreceptor-mediated IPSCs (D2-IPSCs) in the VTA of mouse, rat, and guinea pig. Robust D2-IPSCs were observed in all recordings from neurons in slices taken from mouse, whereas D2-IPSCs in rat and guinea pig were observed less frequently and were significantly smaller in amplitude. In slices taken from guinea pig, dopamine release was more persistent under conditions of reduced extracellular calcium. The decline in the concentration of dopamine was also prolonged and not as sensitive to inhibition of reuptake by cocaine. This resulted in an increased duration of D2-IPSCs in the guinea pig. Therefore, unlike the mouse or the rat, the time course of dopamine in the extracellular space of the guinea pig determined the duration the D2-IPSC. Functionally, differences in D2-IPSCs resulted in inhibition of dopamine neuron firing only in slices from mouse. The results suggest that the mechanisms and functional consequences of somatodendritic dopamine transmission in the VTA vary among species. This highlights the complexity that underlies dopamine-dependent transmission in one brain area. Differences in somatodendritic transmission would be expected in vivo to affect the downstream activity of the mesocorticolimbic dopamine system and subsequent terminal release.
Collapse
|
9
|
Misono K, Lessard A. Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area. Neuroscience 2012; 203:27-38. [DOI: 10.1016/j.neuroscience.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022]
|