1
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
2
|
Morigaki R, Lee JH, Yoshida T, Wüthrich C, Hu D, Crittenden JR, Friedman A, Kubota Y, Graybiel AM. Spatiotemporal Up-Regulation of Mu Opioid Receptor 1 in Striatum of Mouse Model of Huntington's Disease Differentially Affecting Caudal and Striosomal Regions. Front Neuroanat 2020; 14:608060. [PMID: 33362481 PMCID: PMC7758501 DOI: 10.3389/fnana.2020.608060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
The striatum of humans and other mammals is divided into macroscopic compartments made up of a labyrinthine striosome compartment embedded in a much larger surrounding matrix compartment. Anatomical and snRNA-Seq studies of the Huntington’s disease (HD) postmortem striatum suggest a preferential decline of some striosomal markers, and mRNAs studies of HD model mice concur. Here, by immunohistochemical methods, we examined the distribution of the canonical striosomal marker, mu-opioid receptor 1 (MOR1), in the striatum of the Q175 knock-in mouse model of HD in a postnatal time series extending from 3 to 19 months. We demonstrate that, contrary to the loss of many markers for striosomes, there is a pronounced up-regulation of MOR1 in these Q175 knock-in mice. We show that in heterozygous Q175 knock-in model mice [~192 cytosine-adenine-guanine (CAG) repeats], this MOR1 up-regulation progressed with advancing age and disease progression, and was particularly remarkable at caudal levels of the striatum. Given the known importance of MOR1 in basal ganglia signaling, our findings, though in mice, should offer clues to the pathogenesis of psychiatric features, especially depression, reinforcement sensitivity, and involuntary movements in HD.
Collapse
Affiliation(s)
- Ryoma Morigaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan.,Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jannifer H Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Tomoko Yoshida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christian Wüthrich
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dan Hu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander Friedman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yasuo Kubota
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
3
|
Phosphodiesterase-10A Inverse Changes in Striatopallidal and Striatoentopeduncular Pathways of a Transgenic Mouse Model of DYT1 Dystonia. J Neurosci 2017; 37:2112-2124. [PMID: 28115486 DOI: 10.1523/jneurosci.3207-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
We report that changes of phosphodiesterase-10A (PDE10A) can map widespread functional imbalance of basal ganglia circuits in a mouse model of DYT1 dystonia overexpressing mutant torsinA. PDE10A is a key enzyme in the catabolism of second messenger cAMP and cGMP, whose synthesis is stimulated by D1 receptors and inhibited by D2 receptors preferentially expressed in striatoentopeducuncular/substantia nigra or striatopallidal pathways, respectively. PDE10A was studied in control mice (NT) and in mice carrying human wild-type torsinA (hWT) or mutant torsinA (hMT). Quantitative analysis of PDE10A expression was assessed in different brain areas by rabbit anti-PDE10A antibody immunohistochemistry and Western blotting. PDE10A-dependent cAMP hydrolyzing activity and PDE10A mRNA were also assessed. Striatopallidal neurons were identified by rabbit anti-enkephalin antibody.In NT mice, PDE10A is equally expressed in medium spiny striatal neurons and in their projections to entopeduncular nucleus/substantia nigra and to external globus pallidus. In hMT mice, PDE10A content selectively increases in enkephalin-positive striatal neuronal bodies; moreover, PDE10A expression and activity in hMT mice, compared with NT mice, significantly increase in globus pallidus but decrease in entopeduncular nucleus/substantia nigra. Similar changes of PDE10A occur in hWT mice, but such changes are not always significant. However, PDE10A mRNA expression appears comparable among NT, hWT, and hMT mice.In DYT1 transgenic mice, the inverse changes of PDE10A in striatoentopeduncular and striatopallidal projections might result over time in an imbalance between direct and indirect pathways for properly focusing movement. The decrease of PDE10A in the striatoentopeduncular/nigral projections might lead to increased intensity and duration of D1-stimulated cAMP/cGMP signaling; conversely, the increase of PDE10A in the striatopallidal projections might lead to increased intensity and duration of D2-inhibited cAMP/cGMP signaling.SIGNIFICANCE STATEMENT In DYT1 transgenic mouse model of dystonia, PDE10A, a key enzyme in cAMP and cGMP catabolism, is downregulated in striatal projections to entopeduncular nucleus/substantia nigra, preferentially expressing D1 receptors that stimulate cAMP/cGMP synthesis. Conversely, in DYT1 mice, PDE10A is upregulated in striatal projections to globus pallidus, preferentially expressing D2 receptors that inhibit cAMP/cGMP synthesis. The inverse changes to PDE10A in striatoentopeduncular/substantia nigra and striatopallidal pathways might tightly interact downstream to dopamine receptors, likely resulting over time to increased intensity and duration respectively of D1-stimulated and D2-inhibited cAMP/cGMP signals. Therefore, PDE10A changes in the DYT1 model of dystonia can upset the functional balance of basal ganglia circuits, affecting direct and indirect pathways simultaneously.
Collapse
|
4
|
McCollum LA, Roberts RC. Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 2014; 271:23-34. [PMID: 24769226 PMCID: PMC4060433 DOI: 10.1016/j.neuroscience.2014.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/21/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Many behavioral, physiological, and anatomical studies utilize animal models to investigate human striatal pathologies. Although commonly used, rodent striatum may not present the optimal animal model for certain studies due to a lesser morphological complexity than that of non-human primates, which are increasingly restricted in research. As an alternative, the tree shrew could provide a beneficial animal model for studies of the striatum. The gross morphology of the tree shrew striatum resembles that of primates, with separation of the caudate and putamen by the internal capsule. The neurochemical anatomy of the ventral striatum, specifically the nucleus accumbens, has never been examined. This major region of the limbic system plays a role in normal physiological functioning and is also an area of interest for human striatal disorders. The current study uses immunohistochemistry of calbindin and tyrosine hydroxylase (TH) to determine the ultrastructural organization of the nucleus accumbens core and shell of the tree shrew (Tupaia glis belangeri). Stereology was used to quantify the ultrastructural localization of TH, which displays weaker immunoreactivity in the core and denser immunoreactivity in the shell. In both regions, synapses with TH-immunoreactive axon terminals were primarily symmetric and showed no preference for targeting dendrites versus dendritic spines. The results were compared to previous ultrastructural studies of TH and dopamine in rat and monkey nucleus accumbens. Tree shrews and monkeys show no preference for the postsynaptic target in the shell, in contrast to rats which show a preference for synapsing with dendrites. Tree shrews have a ratio of asymmetric to symmetric synapses formed by TH-immunoreactive terminals that is intermediate between rats and monkeys. The findings from this study support the tree shrew as an alternative model for studies of human striatal pathologies.
Collapse
Affiliation(s)
- L A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Petruzziello F, Falasca S, Andren PE, Rainer G, Zhang X. Chronic nicotine treatment impacts the regulation of opioid and non-opioid peptides in the rat dorsal striatum. Mol Cell Proteomics 2013; 12:1553-62. [PMID: 23436905 DOI: 10.1074/mcp.m112.024828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence.
Collapse
Affiliation(s)
- Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin de Musee 5, Fribourg CH-1700, Switzerland
| | | | | | | | | |
Collapse
|