1
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kraft P, Kraft B. Explaining socioeconomic disparities in health behaviours: A review of biopsychological pathways involving stress and inflammation. Neurosci Biobehav Rev 2021; 127:689-708. [PMID: 34048858 DOI: 10.1016/j.neubiorev.2021.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 01/29/2023]
Abstract
The purpose of this article was to explore how individuals' position in a socioeconomic hierarchy is related to health behaviours that are related to socioeconomic disparities in health. We identified research which shows that: (a) low socioeconomic status (SES) is associated with living in harsh environments, (b) harsh environments are related to increased levels of stress and inflammation, (c) stress and inflammation impact neural systems involved in self-control by sensitising the impulsive system and desensitising the reflective system, (d) the effects are inflated valuations of small immediate rewards and deflated valuations of larger delayed rewards, (e) these effects are observed as increased delay discounting, and (f) delay discounting is positively associated with practicing more unhealthy behaviours. The results are discussed within an adaptive evolutionary framework which lays out how the stress response system, and its interaction with the immune system and brain systems for decision-making and behaviours, provides the biopsychological mechanisms and regulatory shifts that make widespread conditional adaptability possible. Consequences for policy work, interventions, and future research are discussed.
Collapse
Affiliation(s)
- Pål Kraft
- Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, 0317, Oslo, Norway; Department of Psychology, Bjørknes University College, Lovisenberggata 13, 0456, Oslo, Norway.
| | - Brage Kraft
- Division of Psychiatry, Diakonhjemmet Hospital, P. O. Box 23 Vinderen, 0319, Oslo, Norway.
| |
Collapse
|
3
|
Exploring dopaminergic transmission in gambling addiction: A systematic translational review. Neurosci Biobehav Rev 2020; 119:481-511. [DOI: 10.1016/j.neubiorev.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/16/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
|
4
|
Zoratto F, Oddi G, Gori E, Micucci A, De Petrillo F, Paglieri F, Adriani W, Laviola G, Addessi E. Social modulation of risky decision-making in rats (Rattus norvegicus) and tufted capuchin monkeys (Sapajus spp.). Behav Brain Res 2018; 347:37-48. [DOI: 10.1016/j.bbr.2018.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 01/25/2023]
|
5
|
Beaudet G, Paizanis E, Zoratto F, Lacivita E, Leopoldo M, Freret T, Laviola G, Boulouard M, Adriani W. LP-211, a selective 5-HT7
receptor agonist, increases novelty-preference and promotes risk-prone behavior in rats. Synapse 2017; 71. [DOI: 10.1002/syn.21995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- G. Beaudet
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - E. Paizanis
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - F. Zoratto
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - E. Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro,”; Bari Italy
| | - M. Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro,”; Bari Italy
- BIOFORDRUG s.r.l; Spin-off by Università degli Studi di Bari; Bari Italy
| | - T. Freret
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - G. Laviola
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - M. Boulouard
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - W. Adriani
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| |
Collapse
|
6
|
Frost R, McNaughton N. The neural basis of delay discounting: A review and preliminary model. Neurosci Biobehav Rev 2017; 79:48-65. [DOI: 10.1016/j.neubiorev.2017.04.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/30/2022]
|
7
|
Adolescent GBR12909 exposure induces oxidative stress, disrupts parvalbumin-positive interneurons, and leads to hyperactivity and impulsivity in adult mice. Neuroscience 2016; 345:166-175. [PMID: 27890827 DOI: 10.1016/j.neuroscience.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 10/15/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
The adolescent period in mammals is a critical period of brain maturation and thus represents a time of susceptibility to environmental insult, e.g. psychosocial stress and/or drugs of abuse, which may cause lasting impairments in brain function and behavior and even precipitate symptoms in at-risk individuals. One likely effect of these environmental insults is to increase oxidative stress in the developing adolescent brain. Indeed, there is increasing evidence that redox dysregulation plays an important role in the development of schizophrenia and other neuropsychiatric disorders and that GABA interneurons are particularly susceptible to alterations in oxidative stress. The current study sought to model this adolescent neurochemical "stress" by exposing mice to the dopamine transporter inhibitor GBR12909 (5mg/kg; IP) during adolescence (postnatal day 35-44) and measuring the resultant effect on locomotor behavior and probabilistic reversal learning as well as GABAergic interneurons and oxidative stress in adulthood. C57BL6/J mice exposed to GBR12909 showed increased activity in a novel environment and increased impulsivity as measured by premature responding in the probabilistic reversal learning task. Adolescent GBR12909-exposed mice also showed decreased parvalbumin (PV) immunoreactivity in the prefrontal cortex, which was accompanied by increased oxidative stress in PV+ neurons. These findings indicate that adolescent exposure to a dopamine transporter inhibitor results in loss of PV in GABAergic interneurons, elevations in markers of oxidative stress, and alterations in behavior in adulthood.
Collapse
|
8
|
Zoratto F, Romano E, Pascale E, Pucci M, Falconi A, Dell'Osso B, Maccarrone M, Laviola G, D'Addario C, Adriani W. Down-regulation of serotonin and dopamine transporter genes in individual rats expressing a gambling-prone profile: A possible role for epigenetic mechanisms. Neuroscience 2016; 340:101-116. [PMID: 27789384 DOI: 10.1016/j.neuroscience.2016.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
Abstract
Gambling Disorder (GD) is characterized by excessive gambling despite adverse consequences on individual functioning. In spite of some positive findings, it is difficult to draw any conclusion on the genetics of GD. Indeed, beyond DNA sequence variation, other regulatory mechanisms (like those that engage epigenetics) may explain gene alterations in this addictive disease. Wistar male rats underwent an operant task for the evaluation of individual propensity to gamble. Few rats, after having learnt to prefer nose-poking for a large over a small food reward, were sacrificed to obtain a baseline profile of gene expression at both central and peripheral levels. In the remaining rats, probability of occurrence of large-reward delivery decreased progressively to very low levels. Thus, rats were faced with temptation to "gamble", i.e. to nose-poke for a binge reward, whose delivery was omitted the majority of times. After 3weeks of testing, rats showing a clear-cut profile of either gambling proneness or aversion were selected and sacrificed after the last session. A selective down-regulation of i) serotonin transporter in prefrontal cortex, ii) tyrosine hydroxylase in ventral striatum, iii) dopamine transporter in lymphocytes was evidenced in "gambler" vs "non-gambler" rats. The exposure to such operant task (compared to home-cage alone) modulated ventrostriatal but not prefrontal genes. A consistent increase of DNA methylation, in one specific CpG site at serotonin transporter gene, was evident in prefrontal cortex of "gambler" rats. Elucidation of epigenetic changes occurring during GD progression may pave the way to the development of new therapeutic strategies through specific modulation of epigenetic factors.
Collapse
Affiliation(s)
- Francesca Zoratto
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Romano
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Esterina Pascale
- Department of Medical Surgical Sciences & Biotechnology, "Sapienza" University of Rome, Rome, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Bernardo Dell'Osso
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Policlinico, Milan, Italy; Bipolar Disorders Clinic, Stanford University, Stanford, CA, USA
| | - Mauro Maccarrone
- School of Medicine and Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, Santa Lucia Foundation, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Walter Adriani
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Commentary on the special issue "The Adolescent Brain": How can we run operant paradigms in a preclinical adolescent model? Technical tips and future perspectives. Neurosci Biobehav Rev 2016; 70:323-328. [PMID: 27484871 DOI: 10.1016/j.neubiorev.2016.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
|
10
|
Zoratto F, Laviola G, Adriani W. The subjective value of probabilistic outcomes: Impact of reward magnitude on choice with uncertain rewards in rats. Neurosci Lett 2016; 617:225-31. [PMID: 26905669 DOI: 10.1016/j.neulet.2016.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 11/19/2022]
Abstract
Interest is rising for animal modelling of Gambling disorder (GD), which is rapidly emerging as a mental health concern. In the present study, we assessed gambling proneness in male Wistar-Han rats using the "Probabilistic Delivery Task" (PDT). This operant protocol is based on choice between either certain, small amounts of food (SS) or larger amounts of food (LLL) delivered (or not) depending on a given (and progressively decreasing) probability. Here, we manipulated the ratio between large and small reward size to assess the impact of different magnitudes on rats' performance. Specifically, we drew a comparison between threefold (2 vs 6 pellets) and fivefold (1 vs 5 pellets) sizes. As a consequence, the "indifferent point" (IP, at which either choice is mathematically equivalent in terms of total foraging) was at 33% and 20% probability of delivery, respectively. Animals tested with the sharper contrast (i.e. fivefold ratio) exhibited sustained preference for LLL far beyond the IP, despite high uncertainty and low payoff, which rendered LLL a sub-optimal option. By contrast, animals facing a slighter contrast (i.e. threefold ratio) were increasingly disturbed by progressive rarefaction of rewards, as expressed by enhanced inadequate nose-poking: this was in accordance with their prompt shift in preference to SS, already shown around the IP. In conclusion, a five-folded LLL-to-SS ratio was not only more attractive, but also less frustrating than a three-folded one. Thus, a profile of gambling proneness in the PDT is more effectively induced by marked contrast between alternative options.
Collapse
Affiliation(s)
- Francesca Zoratto
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | - Giovanni Laviola
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | - Walter Adriani
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy.
| |
Collapse
|
11
|
Individual differences in gambling proneness among rats and common marmosets: an automated choice task. BIOMED RESEARCH INTERNATIONAL 2014; 2014:927685. [PMID: 24971360 PMCID: PMC4058269 DOI: 10.1155/2014/927685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 11/24/2022]
Abstract
Interest is rising for animal modeling of pathological gambling. Using the operant probabilistic-delivery task (PDT), gambling proneness can be evaluated in laboratory animals. Drawing a comparison with rats, this study evaluated the common marmoset (Callithrix jacchus) using a PDT. By nose- or hand-poking, subjects learnt to prefer a large (LLL, 5-6 pellets) over a small (SS, 1-2 pellets) reward and, subsequently, the probability of occurrence of large-reward delivery was decreased progressively to very low levels (from 100% to 17% and 14%). As probability decreased, subjects showed a great versus little shift in preference from LLL to SS reinforcer. Hence, two distinct subpopulations (“non-gambler” versus “gambler”) were differentiated within each species. A proof of the model validity comes from marmosets' reaction to reward-delivery omission. Namely, depending on individual temperament (“gambler” versus “non-gambler”), they showed either persistence (i.e., inadequate pokes towards LLL) or restlessness (i.e., inadequate pokes towards SS), respectively. In conclusion, the marmoset could be a suitable model for preclinical gambling studies. Implementation of the PDT to species other than rats may be relevant for determining its external validity/generalizability and improving its face/construct validity.
Collapse
|
12
|
Paglieri F, Addessi E, De Petrillo F, Laviola G, Mirolli M, Parisi D, Petrosino G, Ventricelli M, Zoratto F, Adriani W. Nonhuman gamblers: lessons from rodents, primates, and robots. Front Behav Neurosci 2014; 8:33. [PMID: 24574984 PMCID: PMC3920650 DOI: 10.3389/fnbeh.2014.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
The search for neuronal and psychological underpinnings of pathological gambling in humans would benefit from investigating related phenomena also outside of our species. In this paper, we present a survey of studies in three widely different populations of agents, namely rodents, non-human primates, and robots. Each of these populations offers valuable and complementary insights on the topic, as the literature demonstrates. In addition, we highlight the deep and complex connections between relevant results across these different areas of research (i.e., cognitive and computational neuroscience, neuroethology, cognitive primatology, neuropsychiatry, evolutionary robotics), to make the case for a greater degree of methodological integration in future studies on pathological gambling.
Collapse
Affiliation(s)
- Fabio Paglieri
- Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR) Rome, Italy
| | - Elsa Addessi
- Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR) Rome, Italy
| | | | - Giovanni Laviola
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Marco Mirolli
- Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR) Rome, Italy
| | - Domenico Parisi
- Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR) Rome, Italy
| | - Giancarlo Petrosino
- Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR) Rome, Italy
| | - Marialba Ventricelli
- Department of Environmental Biology, University of Rome "La Sapienza" Rome, Italy
| | - Francesca Zoratto
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy ; Bambino Gesù Children's Hospital IRCCS Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
13
|
van den Bos R, Davies W, Dellu-Hagedorn F, Goudriaan AE, Granon S, Homberg J, Rivalan M, Swendsen J, Adriani W. Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev 2013; 37:2454-71. [PMID: 23867802 DOI: 10.1016/j.neubiorev.2013.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Decision-making plays a pivotal role in daily life as impairments in processes underlying decision-making often lead to an inability to make profitable long-term decisions. As a case in point, pathological gamblers continue gambling despite the fact that this disrupts their personal, professional or financial life. The prevalence of pathological gambling will likely increase in the coming years due to expanding possibilities of on-line gambling through the Internet and increasing liberal attitudes towards gambling. It therefore represents a growing concern for society. Both human and animal studies rapidly advance our knowledge on brain-behaviour processes relevant for understanding normal and pathological gambling behaviour. Here, we review in humans and animals three features of pathological gambling which hitherto have received relatively little attention: (1) sex differences in (the development of) pathological gambling, (2) adolescence as a (putative) sensitive period for (developing) pathological gambling and (3) avenues for improving ecological validity of research tools. Based on these issues we also discuss how research in humans and animals may be brought in line to maximize translational research opportunities.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands; Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zoratto F, Laviola G, Adriani W. Gambling proneness in rats during the transition from adolescence to young adulthood: A home-cage method. Neuropharmacology 2013; 67:444-54. [DOI: 10.1016/j.neuropharm.2012.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/28/2022]
|
15
|
Macrì S. On the incongruity between developmental plasticity and methodological rigidity. Front Behav Neurosci 2013; 6:93. [PMID: 23335891 PMCID: PMC3547230 DOI: 10.3389/fnbeh.2012.00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023] Open
Affiliation(s)
- Simone Macrì
- Department of Cell Biology and Neuroscience, Section of Behavioural Neuroscience, Istituto Superiore di Sanità Roma, Italy
| |
Collapse
|