1
|
Yan D, Liu X, Gao Y, Li X, Chen X, Qian Y, Zheng S, Shen Y. Molecular imaging of excitability difference between alkaloids/salts (nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide). J Pharmacol Toxicol Methods 2024; 130:107569. [PMID: 39461626 DOI: 10.1016/j.vascn.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Comparison of the excitability of four different alkaloids/salts, including nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide. Based on positron emission tomography (PET) imaging and 18F-Fallypride, a novel technique for measuring alkaloid/salt excitability in SD rats was developed. Different doses and types of alkaloids/salts were administered to the SD rats in a single nebulised inhalation. The results showed that: (1) PET imaging technology can detect the excitability intensity of SD rats after single inhalation of alkaloids/salts in non-invasive real time and the optimal PET scanning time of four different alkaloids/salts (nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide) were slightly different. (2) The excitatory saturation effect of four alkaloids/salts was observed in SD rats after single inhalation and the saturation effect doses of nicotine, nicotine benzoate, caffeine and arecine hydrobromide were 0.063 mg/kg, 0.075 mg/kg, 0.33 mg/kg and 0.075 mg/kg, respectively. (3) In the case of single inhalation of the same dose of four alkaloids/salts, male SD rats inhaled arecoline hydrobromide with the strongest excitability, while female SD rats inhaled nicotinic benzoate. A PET method for noninvasive real-time detection of alkaloid/salt excitability in SD rats was established. The finding of an excitatory saturation effect for four alkaloids/salts (nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide) and the presence of excitatory intensity and gender differences at the same dose of inhalation of four alkaloids/salts, which provide a new theoretical basis for determiningthe content of alkaloids/salts.
Collapse
Affiliation(s)
- Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China
| | - Xiaomin Liu
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China
| | - Yihan Gao
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China
| | - Xiaonan Li
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China
| | - Xiabin Chen
- Huajing Molecular Imaging & Drug Research Institutes, NO.18 Fuyu Road, Changshu, Jiangsu 215500, China
| | - Yiting Qian
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China.
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China.
| | - Yi Shen
- Shanghai New Tobacco Product Research Institute Co., LTD., NO. 3733 Xiupu Road, Shanghai 201315, China
| |
Collapse
|
2
|
Muenstermann C, Clemens KJ. Epigenetic mechanisms of nicotine dependence. Neurosci Biobehav Rev 2024; 156:105505. [PMID: 38070842 DOI: 10.1016/j.neubiorev.2023.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Smoking continues to be a leading cause of preventable disease and death worldwide. Nicotine dependence generates a lifelong propensity towards cravings and relapse, presenting an ongoing challenge for the development of treatments. Accumulating evidence supports a role for epigenetics in the development and maintenance of addiction to many drugs of abuse, however, the involvement of epigenetics in nicotine dependence is less clear. Here we review evidence that nicotine interacts with epigenetic mechanisms to enable the maintenance of nicotine-seeking across time. Research across species suggests that nicotine increases permissive histone acetylation, decreases repressive histone methylation, and modulates levels of DNA methylation and noncoding RNA expression throughout the brain. These changes are linked to the promoter regions of genes critical for learning and memory, reward processing and addiction. Pharmacological manipulation of enzymes that catalyze core epigenetic modifications regulate nicotine reward and associative learning, demonstrating a functional role of epigenetic modifications in nicotine dependence. These findings are consistent with nicotine promoting an overall permissive chromatin state at genes important for learning, memory and reward. By exploring these links through next-generation sequencing technologies, epigenetics provides a promising avenue for future interventions to treat nicotine dependence.
Collapse
Affiliation(s)
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Goud TJ. Epigenetic and Long-Term Effects of Nicotine on Biology, Behavior, and Health. Pharmacol Res 2023; 192:106741. [PMID: 37149116 DOI: 10.1016/j.phrs.2023.106741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Tobacco and nicotine use are associated with disease susceptibility and progression. Health challenges associated with nicotine and smoking include developmental delays, addiction, mental health and behavioral changes, lung disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Increasing evidence suggests that nicotine-associated epigenetic changes may mediate or moderate the development and progression of a myriad of negative health outcomes. In addition, nicotine exposure may confer increased lifelong susceptibility to disease and mental health challenges through alteration of epigenetic signaling. This review examines the relationship between nicotine exposure (and smoking), epigenetic changes, and maladaptive outcomes that include developmental disorders, addiction, mental health challenges, pulmonary disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Overall, findings support the contention that nicotine (or smoking) associated altered epigenetic signaling is a contributing factor to disease and health challenges.
Collapse
Affiliation(s)
- Thomas J Goud
- Department of Biobehavioral Health, The Pennsylvania State University, Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Jia W, Kawahata I, Cheng A, Sasaki T, Sasaoka T, Fukunaga K. Amelioration of Nicotine-Induced Conditioned Place Preference Behaviors in Mice by an FABP3 Inhibitor. Int J Mol Sci 2023; 24:ijms24076644. [PMID: 37047614 PMCID: PMC10095245 DOI: 10.3390/ijms24076644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
We previously demonstrated that fatty acid-binding protein 3 null (FABP3−/−) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
5
|
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, Shin CH, Ohnishi YN, Hanada Y, Miyakawa T, Kim Y, Greengard P, Nishi A. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry 2020; 25:1229-1244. [PMID: 30531938 PMCID: PMC7244404 DOI: 10.1038/s41380-018-0316-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.
Collapse
Affiliation(s)
- Takahide Shuto
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Mahomi Kuroiwa
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Naoki Sotogaku
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yukie Kawahara
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yong-Seok Oh
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Chang-Hoon Shin
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoshinori N. Ohnishi
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yuuki Hanada
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- 0000 0004 1761 798Xgrid.256115.4Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Yong Kim
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Epigenetic Dysregulation of Dopaminergic System by Maternal Cafeteria Diet During Early Postnatal Development. Neuroscience 2020; 424:12-23. [DOI: 10.1016/j.neuroscience.2019.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
|
7
|
Agrawal P, Chung P, Heberlein U, Kent C. Enabling cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield INTACT method reveals the impact of social environment on the epigenetic landscape in dopaminergic neurons. BMC Biol 2019; 17:30. [PMID: 30967153 PMCID: PMC6456965 DOI: 10.1186/s12915-019-0646-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Clement Kent
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Neurobiological studies of tobacco/nicotine use examining genetic, molecular, functional, and behavioral correlates have improved our understanding of nicotine/tobacco dependence and have informed treatment. Recent work extending previously established findings and reporting novel methodologies and discoveries in preclinical and human studies are reviewed. RECENT FINDINGS Recent work in preclinical models has focused on the differential roles of nicotinic receptor subtypes and nicotine's effects on neural systems beyond cortico-striatal dopaminergic pathways, and utilizing advanced methodologies such as pharmacogenetics, optogenetics and rodent fMRI to identify targets for treatment. Likewise, human neuroimaging studies have identified molecular and functional dynamic shifts associated with tobacco/nicotine use that further inform treatment. SUMMARY Nicotine/tobacco use is associated with widespread neural adaptations that are persistent and function to maintain addiction. The continued identification of genetic, molecular, neural, and behavioral endophenotypes related to nicotine/tobacco use, dependence, and addiction will facilitate the development and delivery of personalized treatment.
Collapse
Affiliation(s)
- Megha Chawla
- Department of Neuroscience, Yale School of Medicine, 310 Cedar Street, Brady Memorial Laboratory #407 New Haven, CT 06510
| | - Kathleen A Garrison
- Department of Psychiatry, Yale School of Medicine, 1 Church Street #703, New Haven, CT 06510
| |
Collapse
|
9
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
10
|
González B, Jayanthi S, Gomez N, Torres OV, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:1-11. [PMID: 29247759 PMCID: PMC6983674 DOI: 10.1016/j.pnpbp.2017.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 11/28/2022]
Abstract
Methamphetamine (METH) and modafinil are psychostimulants with different long-term cognitive profiles: METH is addictive and leads to cognitive decline, whereas modafinil has little abuse liability and is a cognitive enhancer. Increasing evidence implicates epigenetic mechanisms of gene regulation behind the lasting changes that drugs of abuse and other psychotropic compounds induce in the brain, like the control of gene expression by histones 3 and 4 tails acetylation (H3ac and H4ac) and DNA cytosine methylation (5-mC). Mice were treated with a seven-day repeated METH, modafinil or vehicle protocol and evaluated in the novel object recognition (NOR) test or sacrificed 4days after last injection for molecular assays. We evaluated total H3ac, H4ac and 5-mC levels in the medial prefrontal cortex (mPFC), H3ac and H4ac promotor enrichment (ChIP) and mRNA expression (RT-PCR) of neurotransmitter systems involved in arousal, wakefulness and cognitive control, like dopaminergic (Drd1 and Drd2), α-adrenergic (Adra1a and Adra1b), orexinergic (Hcrtr1 and Hcrtr2), histaminergic (Hrh1 and Hrh3) and glutamatergic (AMPA Gria1 and NMDA Grin1) receptors. Repeated METH and modafinil treatment elicited different cognitive outcomes in the NOR test, where modafinil-treated mice performed as controls and METH-treated mice showed impaired recognition memory. METH-treated mice also showed i) decreased levels of total H3ac and H4ac, and increased levels of 5-mC, ii) decreased H3ac enrichment at promoters of Drd2, Hcrtr1/2, Hrh1 and Grin1, and increased H4ac enrichment at Drd1, Hrh1 and Grin1, iii) increased mRNA of Drd1a, Grin1 and Gria1. Modafinil-treated mice shared none of these effects and showed increased H3ac enrichment and mRNA expression at Adra1b. Modafinil and METH showed similar effects linked to decreased H3ac in Hrh3, increased H4ac in Hcrtr1, and decreased mRNA expression of Hcrtr2. The specific METH-induced epigenetic and transcriptional changes described here may be related to the long-term cognitive decline effects of the drug and its detrimental effects on mPFC function. The lack of similar epigenetic effects of chronic modafinil administration supports this notion.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Natalia Gomez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Oscar V. Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, California, United States of America
| | - Máximo H. Sosa
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edgar García-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jean-Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America.,Corresponding authors: Veronica Bisagno, Ph.D. Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, piso 5, C1113-Buenos Aires, Argentina. Phone: (+54-11) 4961-6784, Fax: (+54-11) 4963-8593. Jean-Lud Cadet, MD
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Gozen O, Nesil T, Kanit L, Koylu EO, Pogun S. Nicotinic cholinergic and dopaminergic receptor mRNA expression in male and female rats with high or low preference for nicotine. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:556-566. [PMID: 27428758 DOI: 10.1080/00952990.2016.1198799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nicotine exerts its central actions through nicotinic acetylcholine receptors (nAChRs), which in turn regulate major neurotransmitter systems including dopamine. Nicotinic and dopaminergic systems play significant roles in physiological functions, neuropsychiatric disorders, and addiction. OBJECTIVES To evaluate possible differences in the expression of nAChR subunit and dopamine receptor (DR) mRNAs following voluntary nicotine intake. METHODS Male and female rats (n = 67) were exposed to long-term free-choice oral nicotine (24 hours/day, 6 weeks); rats with maximum and minimum nicotine preference/intake were selected. The mRNA levels of genes encoding α4,β2,α5, and α7 nAChR subunits and DR Drd1and Drd2 subtypes were evaluated in the striatum (STR), prefrontal cortex (PFC), and hippocampus using quantitative real-time polymerase chain reaction in selected rats (n = 30) and their control groups (n = 15). RESULTS In addition to baseline differences, expression changes were observed in the mRNA levels of evaluated genes in rats exposed to voluntary oral nicotine in a brain region-, sex-, and preference-related manner. Nicotine intake is correlated negatively with Chrnb2, Chrna7 and positively with Drd1 expression. In the cholinergic system, regional differences in Chnrb2 and Chrna5, sex differences in Chrna4 and Chrna5, and nicotine preference effects in the expression of all subunits except α4 were observed. Chrna5 was lower in maximum than in minimum preferring, and in male than female rats, supporting the inhibitory role of the α5 subunit in nicotine dependence. Nicotine increased Drd2 mRNA expression only in minimum preferring female rats in STR and PFC. CONCLUSION Modulation of nAChR and DR gene expression by nicotine may have clinical implications and aid drug development. Pharmaceuticals targeting the nicotinic cholinergic and dopaminergic systems might be expected to have differential efficacy that varies with the patient's sex or smoking status.
Collapse
Affiliation(s)
- Oguz Gozen
- a Center for Brain Research , Ege University , Bornova , Izmir , Turkey.,b School of Medicine Department of Physiology , Ege University , Bornova , Izmir , Turkey
| | - Tanseli Nesil
- a Center for Brain Research , Ege University , Bornova , Izmir , Turkey
| | - Lutfiye Kanit
- a Center for Brain Research , Ege University , Bornova , Izmir , Turkey.,b School of Medicine Department of Physiology , Ege University , Bornova , Izmir , Turkey
| | - Ersin O Koylu
- a Center for Brain Research , Ege University , Bornova , Izmir , Turkey.,b School of Medicine Department of Physiology , Ege University , Bornova , Izmir , Turkey
| | - Sakire Pogun
- a Center for Brain Research , Ege University , Bornova , Izmir , Turkey
| |
Collapse
|
12
|
Hayase T. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor. PLoS One 2016; 11:e0158950. [PMID: 27404492 PMCID: PMC4942073 DOI: 10.1371/journal.pone.0158950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/26/2016] [Indexed: 01/01/2023] Open
Abstract
Like various stressors, the addictive use of nicotine (NC) is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB) system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC) inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM). Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test) and depression-like (forced swimming test) behaviors, which were observed in mice treated with repeated (4 days) NC (subcutaneous 0.8 mg/kg) and/or IM (10 min), were blocked by the HDAC inhibitors sodium butyrate (SB) and valproic acid (VA). The cannabinoid type 1 (CB1) agonist ACPA (arachidonylcyclopropylamide; AC) also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR), which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor-induced antidepressant-like effects may reflect the characteristic involvement of histone acetylation within the NC-related neurotransmitter systems other than the ECB system.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal Medicine, Kyoto University, Kyoto 606–8501, Japan
- * E-mail:
| |
Collapse
|
13
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
14
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Shukla C, Koch LG, Britton SL, Cai M, Hruby VJ, Bednarek M, Novak CM. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience 2015; 310:252-67. [PMID: 26404873 DOI: 10.1016/j.neuroscience.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.
Collapse
Affiliation(s)
- C Shukla
- Department of Biological Sciences, Kent State University, Kent, OH, United States; Harvard Medical School - VA Boston Healthcare System, Boston, MA, United States.
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - M Bednarek
- MedImmune Limited, Cambridge, United Kingdom
| | - C M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
16
|
de Kloet SF, Mansvelder HD, De Vries TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015. [PMID: 26208783 DOI: 10.1016/j.bcp.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit.
Collapse
Affiliation(s)
- Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Herman AI, DeVito EE, Jensen KP, Sofuoglu M. Pharmacogenetics of nicotine addiction: role of dopamine. Pharmacogenomics 2015; 15:221-34. [PMID: 24444411 DOI: 10.2217/pgs.13.246] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurotransmitter dopamine (DA) plays a central role in addictive disorders, including nicotine addiction. Specific DA-related gene variants have been studied to identify responsiveness to treatment for nicotine addiction. Genetic variants in DRD2, DRD4, ANKK1, DAT1, COMT and DBH genes show some promise in informing personalized prescribing of smoking cessation pharmacotherapies. However, many trials studying these variants had small samples, used retrospective design or were composed of mainly self-identified Caucasian individuals. Furthermore, many of these studies lacked a comprehensive measurement of nicotine metabolism rate, did not assess the roles of sex or the menstrual cycle, and did not investigate the role of rare variants and/or epigenetic factors. Future work should be conducted addressing these limitations to more effectively utilize DA genetic information to unlock the potential of smoking cessation pharmacogenetics.
Collapse
Affiliation(s)
- Aryeh I Herman
- Yale University, School of Medicine, Department of Psychiatry & VA Connecticut Healthcare System, VA Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA
| | | | | | | |
Collapse
|
18
|
Cadmium increases the sensitivity of adolescent female mice to nicotine-related behavioral deficits. Behav Neurol 2014; 2014:360978. [PMID: 25477708 PMCID: PMC4247978 DOI: 10.1155/2014/360978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain) were divided into four groups of five (n = 5) mice each. A set of mice (Nic) received subcutaneous nicotine (2.0 mg/kg) while a separate set (Cd) was treated with 2.0 mg/kg cadmium (subcutaneous). For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine and 2.0 mg/kg of Cd. Subsequently, a separate group of animals (n = 5; control) received normal saline. The total duration of treatment for all groups was 28 days (P28–P56). At P56, the treatment was discontinued, after which the animals were examined in behavioural tests. Nicotine and cadmium increased the metabolism and food intake in the female adolescent mice. This also corresponded to an increase in weight when compared with the control. However, a combined nicotine-cadmium treatment induced a decline in weight of the animals versus the control. Also, nicotine administration increased the motor function, while cadmium and nicotine-cadmium treatment caused a decline in motor activity. Both nicotine and cadmium induced a reduction in memory index; however, nicotine-cadmium treatment induced the most significant decrease in nonspatial working memory.
Collapse
|
19
|
Robles AI, Yang P, Jen J, McClary AC, Calhoun K, Bowman ED, Vähäkangas K, Greathouse KL, Wang Y, Olivo-Marston S, Wenzlaff AS, Deng B, Schwartz AG, Ryan BM. A DRD1 polymorphism predisposes to lung cancer among those exposed to secondhand smoke during childhood. Cancer Prev Res (Phila) 2014; 7:1210-8. [PMID: 25281486 DOI: 10.1158/1940-6207.capr-14-0158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lung cancer has a familial component which suggests a genetic contribution to its etiology. Given the strong evidence linking smoking with lung cancer, we studied miRNA-related loci in genes associated with smoking behavior. CHRNA, CHRNB gene families, CYP2A6, and DRD1 (dopamine receptor D1) were mined for SNPs that fell within the seed region of miRNA binding sites and then tested for associations with risk in a three-stage validation approach. A 3'UTR (untranslated region) SNP in DRD1 was associated with a lower risk of lung cancer among individuals exposed to secondhand smoke during childhood [OR, 0.69; 95% confidence interval (CI), 0.60-0.79; P < 0.0001]. This relationship was evident in both ever (OR, 0.74; 95% CI, 0.62-0.88; P = 0.001) and never smokers (OR, 0.61; 95% CI, 0.47-0.79; P < 0.0001), European American (OR, 0.65; 95% CI, 0.53-0.80; P < 0.0001), and African American (OR, 0.73; 95% CI, 0.62-0.88; P = 0.001) populations. Although much remains undefined about the long-term risks associated with exposure to secondhand smoke and heterogeneity between individuals in regard to their susceptibility to the effects of secondhand smoke, our data show an interaction between an SNP in the 3'UTR of DRD1 and exposure to secondhand smoke during childhood. Further work is needed to explore the mechanistic underpinnings of this SNP and the nature of the interaction between DRD1 and exposure to secondhand smoke during childhood.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ping Yang
- Mayo Clinic, Department of Health Sciences Research, Rochester, Minnesota
| | - Jin Jen
- Department of Laboratory Medicine and Pathology and Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andrew C McClary
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland. Department of Pathology, Stanford University Hospital and Clinics, Stanford, California
| | - Kara Calhoun
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kirsi Vähäkangas
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Leigh Greathouse
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yi Wang
- Division of Preventive Medicine, School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China. Division of Epidemiology, Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Susan Olivo-Marston
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio
| | - Angela S Wenzlaff
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bo Deng
- Division of Epidemiology, Health Sciences Research, Mayo Clinic, Rochester, Minnesota. Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Ann G Schwartz
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
20
|
Huang YY, Levine A, Kandel DB, Yin D, Colnaghi L, Drisaldi B, Kandel ER. D1/D5 receptors and histone deacetylation mediate the Gateway Effect of LTP in hippocampal dentate gyrus. Learn Mem 2014; 21:153-60. [PMID: 24549570 PMCID: PMC3929850 DOI: 10.1101/lm.032292.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We find that a single injection of cocaine does not alter LTP. However, pretreatment with nicotine followed by a single injection of cocaine causes a substantial enhancement of LTP. This priming effect of nicotine is unidirectional: There is no enhancement of LTP if cocaine is administrated prior to nicotine. The facilitation induced by nicotine and cocaine can be blocked by oral administration of the dopamine D1/D5 receptor antagonist (SKF 83566) and enhanced by the D1/D5 agonist (SKF 38393). Application of the histone deacetylation inhibitor suberoylanilide hydroxamic acid (SAHA) simulates the priming effect of nicotine on cocaine. By contrast, the priming effect of nicotine on cocaine is blocked in genetically modified mice that are haploinsufficient for the CREB-binding protein (CBP) and possess only one functional CBP allele and therefore exhibit a reduction in histone acetylation. These results demonstrate that the DG of the hippocampus is an important brain region contributing to the priming effect of nicotine on cocaine. Moreover, both activation of dopamine-D1 receptor/PKA signaling pathway and histone deacetylation/CBP mediated transcription are required for the nicotine priming effect in the DG.
Collapse
Affiliation(s)
- Yan-You Huang
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37:1622-44. [PMID: 23806439 PMCID: PMC3788047 DOI: 10.1016/j.neubiorev.2013.06.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA.
| | | | | | | | | |
Collapse
|