1
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Lillethorup TP, Glud AN, Alstrup AKO, Mikkelsen TW, Nielsen EH, Zaer H, Doudet DJ, Brooks DJ, Sørensen JCH, Orlowski D, Landau AM. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol 2018; 303:142-152. [PMID: 29428213 DOI: 10.1016/j.expneurol.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[11C]dihydrotetrabenazine ([11C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Trine W Mikkelsen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Erik H Nielsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Hamed Zaer
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, UK; Division of Neuroscience, Newcastle University, UK
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
3
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Phan JA, Stokholm K, Zareba-Paslawska J, Jakobsen S, Vang K, Gjedde A, Landau AM, Romero-Ramos M. Early synaptic dysfunction induced by α-synuclein in a rat model of Parkinson's disease. Sci Rep 2017; 7:6363. [PMID: 28743955 PMCID: PMC5526979 DOI: 10.1038/s41598-017-06724-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence suggests that synapses are affected first in Parkinson’s disease (PD). Here, we tested the claim that pathological accumulation of α-synuclein, and subsequent synaptic disruption, occur in absence of dopaminergic neuron loss in PD. We determined early synaptic changes in rats that overexpress human α-synuclein by local injection of viral-vectors in midbrain. We aimed to achieve α-synuclein levels sufficient to induce terminal pathology without significant loss of nigral neurons. We tested synaptic disruption in vivo by analyzing motor defects and binding of a positron emission tomography (PET) radioligand to the vesicular monoamine transporter 2, (VMAT2), [11C]dihydrotetrabenazine (DTBZ). Animals overexpressing α-synuclein had progressive motor impairment and, 12 weeks post-surgery, showed asymmetric in vivo striatal DTBZ binding. The PET images matched ligand binding in post-mortem tissue, and histological markers of dopaminergic integrity. Histology confirmed the absence of nigral cell death with concomitant significant loss of striatal terminals. Progressive aggregation of proteinase-K resistant and Ser129-phosphorylated α-synuclein was observed in dopaminergic terminals, in dystrophic swellings that resembled axonal spheroids and contained mitochondria and vesicular proteins. In conclusion, pathological α-synuclein in nigro-striatal axonal terminals leads to early axonal pathology, synaptic disruption, dysfunction of dopaminergic neurotransmission, motor impairment, and measurable change of VMAT2 in the absence of cell loss.
Collapse
Affiliation(s)
- Jenny-Ann Phan
- Department of Biomedicine, NEURODIN AU IDEAS Center, Aarhus University, Wilhelm Meyers Allé 4, bldg. 1242, Aarhus C, 8000, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Norrebrogade 44, bldg. 10G, Aarhus C, 8000, Denmark
| | - Kathrine Stokholm
- Department of Biomedicine, NEURODIN AU IDEAS Center, Aarhus University, Wilhelm Meyers Allé 4, bldg. 1242, Aarhus C, 8000, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Norrebrogade 44, bldg. 10G, Aarhus C, 8000, Denmark
| | - Justyna Zareba-Paslawska
- Department of Biomedicine, NEURODIN AU IDEAS Center, Aarhus University, Wilhelm Meyers Allé 4, bldg. 1242, Aarhus C, 8000, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Norrebrogade 44, bldg. 10G, Aarhus C, 8000, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Norrebrogade 44, bldg. 10G, Aarhus C, 8000, Denmark
| | - Albert Gjedde
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.,Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Dept of Radiology & Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Norrebrogade 44, bldg. 10G, Aarhus C, 8000, Denmark. .,Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, 8240, Denmark.
| | - Marina Romero-Ramos
- Department of Biomedicine, NEURODIN AU IDEAS Center, Aarhus University, Wilhelm Meyers Allé 4, bldg. 1242, Aarhus C, 8000, Denmark.
| |
Collapse
|
5
|
Konieczny J, Czarnecka A, Lenda T, Kamińska K, Antkiewicz-Michaluk L. The significance of rotational behavior and sensitivity of striatal dopamine receptors in hemiparkinsonian rats: A comparative study of lactacystin and 6-OHDA. Neuroscience 2016; 340:308-318. [PMID: 27826109 DOI: 10.1016/j.neuroscience.2016.10.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022]
Abstract
A growing body of evidence indicates that impairment of the ubiquitin-proteasome (UPS) system in the substantia nigra (SN) plays an important role in the pathogenesis of Parkinson's disease (PD). The aim of our study was to compare two unilateral rat models, one produced by intranigral administration of the UPS inhibitor lactacystin or the other induced by 6-OHDA, in terms of their effect on the amphetamine- and apomorphine-induced rotational behavior, striatal dopamine (DA) D1 and D2 receptor sensitivity and tissue levels of DA and its metabolites. We found that these models did not differ in the intensity of ipsilateral rotations induced by amphetamine. In contrast, apomorphine produced contralateral rotations only in 6-OHDA-lesioned rats, and, depending on the dose, it induced either no or moderate ipsilateral rotations in the lactacystin-lesioned group. In addition, lactacystin induced a strong reduction in the tissue DA level and its metabolites in the lesioned striatum and SN when measured three weeks after the administration which was aggravated six weeks post-lesion, reaching the level comparable to the 6-OHDA group. Binding of [3H]raclopride to D2 receptors was increased in the lesioned striatum in both investigated (PD) models six weeks after lesion. In turn, binding of [3H]SCH23390 to the striatal D1 receptors was not changed in the lactacystin group but was increased bilaterally in the 6-OHDA group. The present results add a new value to the study of DA receptor sensitivity and are discussed in the context of the validity of the lactacystin model as a suitable model of Parkinson's disease.
Collapse
Affiliation(s)
- Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Anna Czarnecka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Lucyna Antkiewicz-Michaluk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|