1
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
2
|
Wang Y, Zheng AN, Yang H, Wang Q, Dai B, Wang JJ, Wan YT, Liu ZB, Liu SY. Olfactory Three-Needle Electroacupuncture Improved Synaptic Plasticity and Gut Microbiota of SAMP8 Mice by Stimulating Olfactory Nerve. Chin J Integr Med 2024; 30:729-741. [PMID: 37999886 DOI: 10.1007/s11655-023-3614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of olfactory three-needle (OTN) electroacupuncture (EA) stimulation of the olfactory system on cognitive dysfunction, synaptic plasticity, and the gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS Thirty-six SAMP8 mice were randomly divided into the SAMP8 (P8), SAMP8+OTN (P8-OT), and SAMP8+nerve transection+OTN (P8-N-OT) groups according to a random number table (n=12 per group), and 12 accelerated senescence-resistant (SAMR1) mice were used as the control (R1) group. EA was performed at the Yintang (GV 29) and bilateral Yingxiang (LI 20) acupoints of SAMP8 mice for 4 weeks. The Morris water maze test, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, Nissl staining, Golgi staining, Western blot, and 16S rRNA sequencing were performed, respectively. RESULTS Compared with the P8 group, OTN improved the cognitive behavior of SAMP8 mice, inhibited neuronal apoptosis, increased neuronal activity, and attenuated hippocampal synaptic dysfunction (P<0.05 or P<0.01). Moreover, the expression levels of synaptic plasticity-related proteins N-methyl-D-aspartate receptor 1 (NMDAR1), NMDAR2B, synaptophysin (SYN), and postsynaptic density protein-95 (PSD95) in hippocampus were increased by OTN treatment (P<0.05 or P<0.01). Furthermore, OTN greatly enhanced the brain-derived neurotrophic factor (BDNF)/cAMP-response element binding (CREB) signaling and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling compared with the P8 group (P<0.05 or P<0.01). However, the neuroprotective effect of OTN was attenuated by olfactory nerve truncation. Compared with the P8 group, OTN had a very limited effect on the fecal microbial structure and composition of SAMP8 mice, while specifically increased the genera Oscillospira and Sutterella (P<0.05). Interestingly, the P8-N-OT group showed an abnormal fecal microbiota with higher microbial α-diversity, Firmicutes/Bacteroidetes ratio and pathogenic bacteria (P<0.05 or P<0.01). CONCLUSIONS OTN improved cognitive deficits and hippocampal synaptic plasticity by stimulating the olfactory nerve and activating the BDNF/CREB and PI3K/AKT/mTOR signaling pathways. Although the gut microbiota was not the main therapeutic target of OTN for Alzheimer's disease, the olfactory nerve was essential to maintain the homeostasis of gut microbiota.
Collapse
Affiliation(s)
- Yuan Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - A-Ni Zheng
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Huan Yang
- Department of Traditional Chinese Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Qiang Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Biao Dai
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Jia-Ju Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Yi-Tong Wan
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Zhi-Bin Liu
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Si-Yang Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
3
|
Navarro-Cruz AR, Juárez-Serrano D, Cesar-Arteaga I, Kammar-García A, Guevara-Díaz JA, Vera-López O, Lazcano-Hernández M, Pérez-Xochipa I, Segura-Badilla O. Oral administration of resveratrol reduces oxidative stress generated in the hippocampus of Wistar rats in response to consumption of ethanol. Front Behav Neurosci 2024; 17:1304006. [PMID: 38274548 PMCID: PMC10810024 DOI: 10.3389/fnbeh.2023.1304006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Chronic ethanol intake has been found to favor hippocampal deterioration and alter neuronal morphological maturation; resveratrol has been suggested as an antioxidant that may counteract these effects. The objective of this study was to analyze the effect of resveratrol on oxidative stress markers, endogenous antioxidant system in the hippocampus, and the behavior of male Wistar rats administered different concentrations of ethanol. Methods The animals, at 3 months old, were randomly distributed into 11 study groups (n = 6/group), orally administered (5 days on, 2 days off) with water (control), ethanol (10, 20, 30, 40 or 50%), or ethanol (10, 20, 30, 40 or 50%) plus resveratrol (10 mg/Kg/day) for 2 months. Subsequently, the production of nitrites, malondialdehyde, and 4-hydroxy-alkenal (HNE) and the enzymatic activity of catalase and superoxide dismutase (SOD) were quantified. Results The levels of nitric oxide and lipid peroxidation products were significantly increased in each ethanol concentration and were statistically different compared to the control group; however, resveratrol significantly reduced oxidative stress caused by high ethanol concentration. The SOD and CAT did not present significant changes with respect to the controls in any of the study groups. In the different concentrations of ethanol used, GR increases significantly in the groups administered with resveratrol but not GPx. Resveratrol was shown to maintain the results similar to the control at most ethanol concentrations. Discussion Our results suggest that resveratrol prevents oxidative stress induced by ethanol in the hippocampus by decreasing cellular lipid peroxidation, but does not prevent the activation of catalase or SOD enzymes; however, allows glutathione to be kept active and in adequate concentrations in its reduced form and avoids alterations in the locomotor system.
Collapse
Affiliation(s)
- Addí Rhode Navarro-Cruz
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Daniel Juárez-Serrano
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ivan Cesar-Arteaga
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ashuin Kammar-García
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | - Obdulia Vera-López
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Martin Lazcano-Hernández
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Orietta Segura-Badilla
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
4
|
de Oliveira Ferreira E, Pessoa Gomes JM, Neves KRT, Lima FAV, de Barros Viana GS, de Andrade GM. Maternal treatment with aripiprazole prevents the development of a valproic acid-induced autism-like phenotype in juvenile male mice. Behav Pharmacol 2023; 34:154-168. [PMID: 36853856 DOI: 10.1097/fbp.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Autism spectrum disorder (ASD) describes a heterogeneous group of neurodevelopmental conditions characterized by deficits in social communication and repetitive behaviors. Aripiprazole (APZ) is an atypical antipsychotic that can safeguard mice against autism-like behavior induced by valproic acid (VPA). In the present study, we examined the effects of maternal treatment with APZ (10 mg/kg) in juvenile mice prenatally exposed to VPA on neurodevelopmental behaviors, social interactions, communication, and working memory, as well as synaptophysin (SYP), synaptosomal-associated protein, 25 kDa (SNAP-25) and microtubule-associated protein 2 (MAP-2) expression in the medial prefrontal cortex (mPFC) and cell viability in the hippocampus. In addition, to evaluate possible APZ interference with the anticonvulsant properties of VPA on pentylenetetrazole (PTZ)-induced seizures were evaluated. Maternal treatment with APZ significantly prevented body weight loss, self-righting, eye-opening, social interactions, social communication, and working memory deficits in mice prenatally exposed to VPA. Additionally, the decrease in the SYP, SNAP-25, and MAP-2 expressions in the mPFC and cell death in the hippocampus was prevented by APZ. Furthermore, APZ (10 mg/kg) did not interfere with the anticonvulsant effect of VPA (15 mg/kg) in animals with PTZ-induced seizures. These findings indicate that maternal treatment with APZ in pregnant mice exposed to VPA protects animals against the ASD-like behavioral phenotype, and this effect may be related, at least in part, to synaptic plasticity and neuronal protection in the PFC and hippocampus. APZ may serve as an effective pharmacological therapeutic target against autistic behaviors in the VPA animal model of ASD, which should be further investigated to verify its clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
5
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
6
|
Díaz A, Flores I, Treviño S. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen Res 2023; 18:51-56. [PMID: 35799508 PMCID: PMC9241392 DOI: 10.4103/1673-5374.331867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes. During this physiological process, the brain is the most affected organ due to changes in its structural and chemical functions, such as changes in plasticity and decrease in the number, diameter, length, and branching of dendrites and dendritic spines. Likewise, it presents a great reduction in volume resulting from the contraction of the gray matter. Consequently, aging can affect not only cognitive functions, including learning and memory, but also the quality of life of older people. As a result of the phenomena, various molecules with notable neuroprotective capacity have been proposed, which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases. It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models. This review aims to describe the neurotrophic potential of molecules such as resveratrol (3,5,4′-trihydroxystilbene), neurotrophins (brain-derived neurotrophic factor), and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin, cerebrolysin, neuropeptide-12, and rapamycin. Most of these molecules have been evaluated by our research group. Studies suggest that these molecules exert an important therapeutic potential, restoring brain function in aging conditions or models of neurodegenerative diseases. Hence, our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.
Collapse
|
7
|
Apam-Castillejos DJ, Tendilla-Beltrán H, Vázquez-Roque RA, Vázquez-Hernández AJ, Fuentes-Medel E, García-Dolores F, Díaz A, Flores G. Second-generation antipsychotic olanzapine attenuates behavioral and prefrontal cortex synaptic plasticity deficits in a neurodevelopmental schizophrenia-related rat model. J Chem Neuroanat 2022; 125:102166. [PMID: 36156295 DOI: 10.1016/j.jchemneu.2022.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Specifically, second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL animals but failed to enhance social disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Collapse
Affiliation(s)
| | | | | | | | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Mexico.
| |
Collapse
|
8
|
De la Torre-Iturbe S, Vázquez-Roque RA, De la Cruz-López F, Flores G, Garcés-Ramírez L. Dendritic and behavioral changes in rats neonatally treated with homocysteine; A proposal as an animal model to study the attention deficit hyperactivity disorder. J Chem Neuroanat 2021; 119:102057. [PMID: 34871732 DOI: 10.1016/j.jchemneu.2021.102057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023]
Abstract
Attention deficit hyperactivity disorder (ADHAD) is a neurobehavioral disorder that affects children and adolescents with a high prevalence. Despite its prevalence and an unclear etiology, previous reports suggest that it is closely related to homocysteine metabolism. Male Sprague Dawley rats were administered with homocysteine from postnatal day (PD) 2 to PD 16. Locomotor activity was evaluated at 35 PD (prepuberal age) and 60 PD (adult age) before and after amphetamine administration. In rats evaluated at both ages, homocysteine induced hyperactivity, and the amphetamine administration reduced hyperactivity significantly at 35 PD, but not at 60 PD. In the social interaction test, homocysteine reduced the number of contacts and increased the latency to the first contact only in rats at 35 PD. Homocysteine also had an effect on short term memory at 35D and 60 PD and long-term memory at 60 PD. Morphological changes were found mainly in the shape of dendritic spines in the prefrontal cortex (PFC-3), dorsal hippocampus (CA1), dentate gyrus (DG) and nucleus accumbens (NAcc), in rats administered neonatally with homocysteine at both ages studied. In prepuberal and adult rats, there was an increase in dendritic length in DG and NAcc, respectively. The dendritic spine morphology also was altered at both ages, mainly decreasing the number of mushroom spines in NAcc and CA1 at 30 PD and in all the areas studied at 60 PD rats. Those areas are associated with the processes of attention, learning and memory that were studied, and those alterations are possibly related to changes observed in the behavioral tests. These behavioral and morphological changes in rats at 35 PD administered with homocysteine could be similar to changes found in children diagnosed with ADHD. Moreover, half to two thirds of children diagnosed with ADHD reach adulthood with this disorder. In this study we found similarities with ADHD, finding alterations in both rats at 35 PD and 60 PD. So, this may be proposed as an animal model to study this disorder present in children, adolescents and adults.
Collapse
Affiliation(s)
- Sandra De la Torre-Iturbe
- Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico; Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, Puebla 72570, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, Puebla 72570, Mexico
| | - Fidel De la Cruz-López
- Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, Puebla 72570, Mexico
| | - Linda Garcés-Ramírez
- Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico.
| |
Collapse
|
9
|
Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. J Chem Neuroanat 2021; 119:102054. [PMID: 34839003 DOI: 10.1016/j.jchemneu.2021.102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the hippocampus where mediates its actions by activating glutamate receptors. The activation of these receptors is essential for the maintenance and dynamics of dendritic spines and plasticity that correlate with learning and memory processes during neurodevelopment and adulthood. We studied in adults the effect of blocking ionotropic glutamate receptors (NMDAR, AMPAR, and KAR) functions at neonatal age (PD1-PD15) with their respective antagonists D-AP5, GYKI-53655 and UBP-302. We first evaluated memory using a new object recognition test in adults. Second, we evaluated the levels of glial fibrillary acidic protein, synaptophysin and actin with immunohistochemistry in the CA1, CA3, and dentate gyrus regions of the hippocampus and, finally, the number of dendritic spines and their dynamics using Golgi-Cox staining. We found that ionotropic glutamate receptor function blockade at neonatal age causes a reduction in short and long-term memory in adulthood and a reduction in the expression of synaptophysin and actin protein levels in the hippocampus regions studied. This blockade also reduced the number of dendritic spines and modified dendritic dynamics in the CA1 region. The antagonism of the three types of ionotropic glutamate receptors reduced the mushrooms and bifurcated types of spines and increased the thin spines. The number of stubby spines was reduced by D-AP5, increased by UPB-302, and not affected by GYKI-53655. Our results indicate that the blockade of neonatal ionotropic glutamate receptors produces alterations that persist until adulthood.
Collapse
|
10
|
Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Mol Psychiatry 2021; 26:4784-4794. [PMID: 32555421 DOI: 10.1038/s41380-020-0809-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
It is known that continuous abuse of amphetamine (AMPH) results in alterations in neuronal structure and cognitive behaviors related to the reward system. However, the impact of AMPH abuse on the hippocampus remains unknown. The aim of this study was to determine the damage caused by AMPH in the hippocampus in an addiction model. We reproduced the AMPH sensitization model proposed by Robinson et al. in 1997 and performed the novel object recognition test (NORt) to evaluate learning and memory behaviors. After the NORt, we performed Golgi-Cox staining, a stereological cell count, immunohistochemistry to determine the presence of GFAP, CASP3, and MT-III, and evaluated oxidative stress in the hippocampus. We found that AMPH treatment generates impairment in short- and long-term memories and a decrease in neuronal density in the CA1 region of the hippocampus. The morphological test showed an increase in the total dendritic length, but a decrease in the number of mature spines in the CA1 region. GFAP labeling increased in the CA1 region and MT-III increased in the CA1 and CA3 regions. Finally, we found a decrease in Zn concentration in the hippocampus after AMPH treatment. An increase in the dopaminergic tone caused by AMPH sensitization generates oxidative stress, neuronal death, and morphological changes in the hippocampus that affect cognitive behaviors like short- and long-term memories.
Collapse
|
11
|
N-Pep-12 supplementation after ischemic stroke positively impacts frequency domain QEEG. Neurol Sci 2021; 43:1115-1125. [PMID: 34173086 DOI: 10.1007/s10072-021-05406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND N-Pep-12 is a dietary supplement with neuroprotective and pro-cognitive effects, as shown in experimental models and clinical studies on patients after ischemic stroke. We tested the hypothesis that N-Pep-12 influences quantitative electroencephalography (QEEG) parameters in patients with subacute to chronic supratentorial ischemic lesions. METHODS We performed secondary data analysis on an exploratory clinical trial (ISRCTN10702895), assessing the efficacy and safety of 90 days of once-daily treatment with 90 mg N-Pep-12 on neurocognitive function and neurorecovery outcome in patients with post-stroke cognitive impairment against a control group. All participants performed two 32-channel QEEG in resting and active states at baseline (30-120 days after stroke) and 90 days later. Power spectral density on the alpha, beta, theta, delta frequency bands, delta/alpha power ratio (DAR), and (delta+theta)/(alpha+beta) ratio (DTABR) were computed and compared across study groups using means comparison and descriptive methods. Secondarily, associations between QEEG parameters and available neuropsychological tests were explored. RESULTS Our analysis showed a statistically significant main effect of EEG segments (p<0.001) in alpha, beta, delta, theta, DA, and DTAB power spectral density. An interaction effect between EEG segments and time was noticed in the alpha power. There was a significant difference in theta spectral power between patients with N-Pep-12 supplementation versus placebo at 0.05 alpha level (p=0.023), independent of time points. CONCLUSION A 90-day, 90 mg daily administration of N-Pep-12 had significant impact on some QEEG indicators in patients after supratentorial ischemic stroke, confirming possible enhancement of post-stroke neurorecovery. Further research is needed to consolidate our findings.
Collapse
|
12
|
Effects of N-Pep-12 dietary supplementation on neurorecovery after ischemic stroke. Neurol Sci 2020; 42:2031-2037. [PMID: 33006057 DOI: 10.1007/s10072-020-04707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the effects of N-Pep-12 dietary supplementation on neurorecovery of middle-aged and older adults with cognitive impairment after ischemic stroke, using neuropsychological outcome scales. METHODS This was a pilot randomized-controlled, phase IV, academic clinical trial that aimed to assess the effect and the safety of a single daily dose of oral 90 mg of N-Pep-12 for 90 days in supporting neurorecovery, as compared with a control group, performed on middle-aged and older adults after supratentorial ischemic stroke. RESULTS Study group differences in baseline changes at day 90 for Montreal Cognitive Assessment (MoCA), Hospital Anxiety and Depression Scale (HADS) - Anxiety subscale, Color Trails 1 and Symbol Search (number incorrect) were statistically significant (Mann-Whitney U test). For MoCA at day 90, a borderline 'intermediate effect' in favour of N-PEP-12 was observed (dCohen = 0.491, η2 = 0.057, OR = 2.436, p = 0.010). HADS Anxiety and Color Trails 1 at day 90 registered a 'small-to-intermediate' effect in favour of N-PEP-12 (dCohen = 0.424, η2 = 0.043, OR = 2.157, p = 0.026; dCohen = 0.481, η2 = 0.055, OR = 2.3927, p = 0.013, respectively). For symbol search errors, an 'intermediate' effect in favour of the control group was observed (dCohen = 0.501, η2 = 0.059, OR = 2.4811, p = 0.007). CONCLUSION This exploratory clinical trial indicates a signal for the benefit of dietary supplementation with N-Pep-12 for the enhancement of neurorecovery after supratentorial ischemic stroke.
Collapse
|
13
|
Aguilar-Hernández L, Vázquez-Hernández AJ, de-Lima-Mar DF, Vázquez-Roque RA, Tendilla-Beltrán H, Flores G. Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. J Chem Neuroanat 2020; 110:101858. [PMID: 32950615 DOI: 10.1016/j.jchemneu.2020.101858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Brain aging is a widely studied process, but due to its complexity, much of its progress is unknown. There are many studies linking memory loss and reduced interneuronal communication with brain aging. However, only a few studies compare young and old animals. In the present study, in male rats aged 3, 6, and 18 months, we analyzed the locomotor activity and also short and long-term memory using the novel object recognition test (NORT), in addition to evaluating the dendritic length and the number of dendritic spines in the prefrontal cortex (PFC) and in the CA1, CA3 and DG regions of the dorsal hippocampus using Golgi-Cox staining. We also analyzed the types of dendritic spines in the aforementioned regions. 6- and 18-month old animals showed a reduction in locomotor activity, while long-term memory deficit was observed in 18-month old rats. At 18 months old, the dendritic length was reduced in all the studied regions. The dendritic spine number was also reduced in layer 5 of the PFC, and the CA1 and CA3 of the hippocampus. The dynamics of dendritic spines changed with age, with a reduction of the mushroom spines in all the studied regions, with an increase of the stubby spines in all the studied regions except from the CA3 region, that showed a reduction. Our data suggest that age causes changes in behavior, which may be the result of morphological changes at the dendrite level, both in their length and in the dynamics of their spines.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Andrea Judith Vázquez-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Diana Frida de-Lima-Mar
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico.
| |
Collapse
|
14
|
Ruíz-Salinas AK, Vázquez-Roque RA, Díaz A, Pulido G, Treviño S, Floran B, Flores G. The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. J Nutr Biochem 2020; 83:108416. [PMID: 32554223 DOI: 10.1016/j.jnutbio.2020.108416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
The main characteristic of brain aging is an exacerbated inflammatory and oxidative response that affects dendritic morphology and the function of the neurons of the prefrontal cortex (PFC) and the hippocampus. This consequently causes memory loss. Recently, the use of the Goji berry (Lycium barbarum) as an antioxidant extract has provided neuroprotection and neuroplasticity, however, its therapeutic potential has not been demonstrated in aging conditions. The objective of this study was to evaluate the effect of Goji administration on memory recognition, as well as the changes in the dendritic morphology of the PFC and Hippocampus pyramidal neurons in old rats. Goji (3 g/kg) was administrated for 60 days in 18-month-old rats. After the treatment, recognition memory was evaluated using the new object recognition task (NORt). The changes in the neuron morphology of the PFC and hippocampus pyramidal neurons in old rats were evaluated by Golgi-cox stain and immunoreactivity for synaptophysin, glial fibrillary acidic protein (GFAP), caspase-3, 3-nitrotyrosine (3-NT) and nuclear factor erythroid 2-related factor 2 (Nrf2). The rats treated with Goji showed a significant increase in dendritic morphology in the PFC and hippocampus neurons, a greater immunoreactivity to synaptophysin and a decrease in reactive astrogliosis and also in caspase-3, in 3-NT and in Nrf2 in these brain regions was also observed. Goji administration promotes the plasticity processes in the PFC and in the hippocampus of old rats, critical structures in the brain aging process.
Collapse
Affiliation(s)
- Ana Karen Ruíz-Salinas
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Rubén A Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Guadalupe Pulido
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigaciones y Estudios Avanzados IPN, DF, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico.
| |
Collapse
|
15
|
Flores G, Flores-Gómez GD, Díaz A, Penagos-Corzo JC, Iannitti T, Morales-Medina JC. Natural products present neurotrophic properties in neurons of the limbic system in aging rodents. Synapse 2020; 75:e22185. [PMID: 32779216 DOI: 10.1002/syn.22185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Aging is a complex process that can lead to neurodegeneration and, consequently, several pathologies, including dementia. Physiological aging leads to changes in several body organs, including those of the central nervous system (CNS). Morphological changes in the CNS and particularly the brain result in motor and cognitive deficits affecting learning and memory and the circadian cycle. Characterizing neural modifications is critical to designing new therapies to target aging and associated pathologies. In this review, we compared aging to the changes occurring within the brain and particularly the limbic system. Then, we focused on key natural compounds, apamin, cerebrolysin, Curcuma longa, resveratrol, and N-PEP-12, which have shown neurotrophic effects particularly in the limbic system. Finally, we drew our conclusions delineating future perspectives for the development of novel natural therapeutics to ameliorate aging-related processes.
Collapse
Affiliation(s)
- Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Gabriel Daniel Flores-Gómez
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla, Puebla, México
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Tommaso Iannitti
- Charles River Discovery Research Services UK Limited part of the Charles River Group, Bristol, UK
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
16
|
Carvajal-Flores FN, Díaz A, Flores-Gómez GD, de la Cruz F, Flores G. Phenylbutyrate ameliorates prefrontal cortex, hippocampus, and nucleus accumbens neural atrophy as well as synaptophysin and GFAP stress in aging mice. Synapse 2020; 74:e22177. [PMID: 32531811 DOI: 10.1002/syn.22177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Recent reports on brain aging suggest that oxidative stress and inflammatory processes contribute to aging. Interestingly, sodium phenylbutyrate (PBA) is an inhibitor of histone deacetylase, which has anti-inflammatory properties. Several reports have suggested the effect of PBA on learning and memory processes, however there are no studies of the effect of this inhibitor of histone deacetylase on aging. Consequently, in the present study, the effect of PBA was studied in 18-month-old mice. The animals were administered PBA for 2 months after locomotor activity treatment and Morris water maze tests were performed. The Golgi-Cox staining technique and immunohistochemistry for glial fibrillary acidic protein (GFAP) and synaptophysin were performed for the morphological procedures. The administration of PBA improves learning and memory according to the Morris water maze test compared to vehicle-treated animals, which had unchanged locomotor activity. Using Golgi-Cox staining, dendritic length and the number of dendritic spines were measured in limbic regions, such as the nucleus accumbens (NAcc), prefrontal cortex (PFC) layer 3, and the CA1 of the dorsal hippocampus. In addition, PBA increased the number of dendritic spines in the PFC, NAcc, and CA1 subregions of the hippocampus with an increase in dendritic length only in the CA1 region. Moreover, PBA reduced the levels of the GFAP and increased the levels of synaptophysin in the studied regions. Thus, PBA can be a useful pharmacological tool to prevent or delay synaptic plasticity damage and cognitive impairment caused by age.
Collapse
Affiliation(s)
| | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel D Flores-Gómez
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla, Cholula, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
17
|
Amirazodi F, Mehrabi A, Amirazodi M, Parsania S, Rajizadeh MA, Esmaeilpour K. The Combination Effects of Resveratrol and Swimming HIIT Exercise on Novel Object Recognition and Open-field Tasks in Aged Rats. Exp Aging Res 2020; 46:336-358. [PMID: 32324489 DOI: 10.1080/0361073x.2020.1754015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Resveratrol, a natural polyphenol abundant in grapes and red wine, has been reported to exert numerous beneficial health effects in the body. High-Intensity Interval Exercise (HIIT) is a form of interval training that provides improved athletic capacity and has a protective effect on health. The purpose of this study was to investigate the interactive effects of swimming HIIT and Resveratrol supplementation on behavioral function in Novel object recognition and open-field tests in aged rats. METHODS A total of 45 aged male Wistar rats with an age of 20 months were randomly assigned into five groups of control (C), swimming HIIT (SW-HIIT), swimming HIIT with Resveratrol supplementation (SW-HIIT-R), Resveratrol supplementation (R), and solvent of Resveratrol supplementation (SR). There was also another group that included young animals (2-month-old) and was used to compare with older animals. Swimming HIIT and Resveratrol supplementation groups performed the exercise and received Resveratrol (10 mg/kg/day, gavage) for six weeks. Novel object recognition and open-field tests were used for evaluating the behavioral functions in animals. RESULTS The results showed that HIIT and Resveratrol significantly improved recognition memory compared to old animals. Moreover, it seems that HIIT and Resveratrol partly could modulate anxiety-like behaviors compared to old animals in the open-field test.
Collapse
Affiliation(s)
- Fatemeh Amirazodi
- Department of Education, Department of Foundations of Education, International Division, Shiraz University , Shiraz, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Exercise Physiology, Kish International Campus, University of Tehran , Kish, Iran
| | - Maryam Amirazodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Shiraz University International Division, Shiraz University , Shiraz, Iran
| | - Shahrnaz Parsania
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Physiology & Pharmacology, Kerman Medical University of Sciences , Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Physiology & Pharmacology, Kerman Medical University of Sciences , Kerman, Iran
| |
Collapse
|
18
|
Wartchow KM, Rodrigues L, Lissner LJ, Federhen BC, Selistre NG, Moreira A, Gonçalves CA, Sesterheim P. Insulin-producing cells from mesenchymal stromal cells: Protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci 2020; 251:117587. [PMID: 32224027 DOI: 10.1016/j.lfs.2020.117587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Barbara Carolina Federhen
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Nicholas Guerini Selistre
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Aline Moreira
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| | - Patrícia Sesterheim
- Institute of Cardiology of Rio Grande do Sul, Experimental Center, Porto Alegre, Brazil
| |
Collapse
|
19
|
Monroy E, Diaz A, Tendilla-Beltrán H, de la Cruz F, Flores G. Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. J Chem Neuroanat 2019; 104:101734. [PMID: 31887346 DOI: 10.1016/j.jchemneu.2019.101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The aged brain has biochemical and morphological alterations in the dendrites of the pyramidal neurons of the limbic system, which consequently trigger motor and cognitive deficits. Bexarotene 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid is a selective agonist of X-retinoid receptors which acts by binding to the intracellular retinoic acid receptors (RAR). It decreases oxidative and inflammatory activity, in addition to the transport of lipids, mechanisms that together could have a neuroprotective effect. Our objective was to evaluate the effect of bexarotene on the motor and cognitive processes, as well as its influence on the dendritic morphology of neurons in the limbic system of elderly mice. Dendritic morphology was evaluated with the Golgi-Cox staining procedure followed by the Sholl analysis. Bexarotene was administered at different doses: 0.0; 0.5; 2.5 and 5.0 mg/kg for 60 days in 18-month-old mice. After the treatment, locomotor activity in a novel environment and spatial memory in the water labyrinth were evaluated. Mice treated with bexarotene did not show significant changes in their behavior. Moreover, bexarotene-treated mice only showed a significant increase in the density of the dendritic spines and the dendritic length in the nucleus accumbens (NAcc) neurons. In conclusion, the administration of bexarotene improves the plasticity of the NAcc of aged mice, and therefore could be a pharmacological alternative to prevent or delay neuroplasticity disruptions in brain aging.
Collapse
Affiliation(s)
- Elibeth Monroy
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico.
| |
Collapse
|
20
|
Flores‐Vivaldo YM, Camacho‐Abrego I, Picazo O, Flores G. Pregnancies alters spine number in cortical and subcortical limbic brain regions of old rats. Synapse 2019; 73:e22100. [DOI: 10.1002/syn.22100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yaredit Margarita Flores‐Vivaldo
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City Mexico
| | - Israel Camacho‐Abrego
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
21
|
Tripchlorolide May Improve Spatial Cognition Dysfunction and Synaptic Plasticity after Chronic Cerebral Hypoperfusion. Neural Plast 2019; 2019:2158285. [PMID: 30923551 PMCID: PMC6409048 DOI: 10.1155/2019/2158285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/10/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques, electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However, for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.
Collapse
|
22
|
Tendilla-Beltrán H, Antonio Vázquez-Roque R, Judith Vázquez-Hernández A, Garcés-Ramírez L, Flores G. Exploring the Dendritic Spine Pathology in a Schizophrenia-related Neurodevelopmental Animal Model. Neuroscience 2019; 396:36-45. [DOI: 10.1016/j.neuroscience.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
|
23
|
Flores-Gómez AA, de Jesús Gomez-Villalobos M, Flores G. Consequences of diabetes mellitus on neuronal connectivity in limbic regions. Synapse 2018; 73:e22082. [PMID: 30457679 DOI: 10.1002/syn.22082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is characterized by high levels of blood glucose. In recent years, its prevalence has increased, which was 422 million in the world in 2014. In elderly patients, DM is associated with deficits in memory and learning processes. The cognitive deficits lead to dementia. With the development of animal models in DM, it has been possible to better understand quantitative morphological changes in numerous neuronal structures belonging to the limbic system, such as the prefrontal cortex (PFC), the hippocampus and basolateral amygdala (BLA). These structures are in close relationship with processes of memory and learning. Several reports have demonstrated that chronic hyperglycemia reduces spinogenesis and dendritic arborization in the aforementioned regions along with a decline in memory and learning processes, especially in streptozotocin (STZ)-induced diabetic rats. In the present review, we discuss animal models, the effects of chronic hyperglycemia on dendritic morphology of limbic regions and memory and learning processes, the effect on neural transmission in these regions, the pathologic mechanisms involved, and the relevance of dendritic morphology in diabetes. All of this information can help us to have a better understanding of dementia in diabetes mellitus and propose strategies for its prevention and treatment.
Collapse
Affiliation(s)
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|