1
|
Kantor S, Drzał A, Setkowicz Z, Elas M, Janeczko K. Dynamics of nitrergic system activation in the rat brain provoked by experimentally induced seizures. Neuroscience 2025; 564:290-298. [PMID: 39424265 DOI: 10.1016/j.neuroscience.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Epilepsy is a pathophysiological condition displaying a highly diverse phenotype. Consequently, comprehending the mechanisms underlying seizures necessitates moving beyond a simplistic model focused on the imbalance between the classical excitatory and inhibitory neurotransmitter systems. Nitric oxide (NO), a nonclassical and multifunctional gaseous neurotransmitter, has the potential to exert a profound influence on epileptic reactivity. Unfortunately, numerous studies have not provided clear answers about its involvement in the pathophysiology of epilepsy. The objective of our study was to delineate the temporal dynamics of alterations in nitrergic system activation after experimentally induced seizures. Seizures were induced in 2-month-old male Wistar rats (n = 55) by an administration of pilocarpine. Over a 6-hour observation period, seizure behaviour intensity was continuously evaluated using a modified Racine scale. At intervals of 6, 12, 24, 48, or 96 h post-chemoconvulsant administration, NO spin trapping was conducted with ferrous-diethyldithiocarbamate complexes (Fe(DETC)2). Electron paramagnetic resonance (EPR) spectroscopy was employed to quantify mononitrosyl iron complexes (NO-Fe(DETC)2) in the brain. The temporal kinetic of NO release after seizures revealed a rise in NO synthesis during the initial 12 h. Subsequently, a sharp decline occurred, returning to baseline 96 h after pilocarpine injection. Notably, our research suggests that the level of NO synthesis does not interfere with the severity of the epileptic seizures that occur. In light of this, we propose that the nitrergic system is quickly activated in the epileptic brain as a compensatory mechanism of the central nervous system. However, under usual conditions, this activation is insufficient to effectively attenuate seizures.
Collapse
Affiliation(s)
- Szymon Kantor
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Agnieszka Drzał
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zuzanna Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland
| | - Martyna Elas
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krzysztof Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
3
|
Ak ET, Okuyucu B, Hatipoğlu B, Arslan G. The effect of acetylcholinesterase inhibitor rivastigmine in pentylenetetrazole-induced kindling model of epilepsy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03679-3. [PMID: 39643806 DOI: 10.1007/s00210-024-03679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to investigate the role of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor rivastigmine (RIVA) in the pentylenetetrazole (PTZ)- induced kindling model of epilepsy. The current study consists of three steps; 1) Saline or RIVA (0.5, 1, and 2 mg/kg) was administered intraperitoneally (i.p.) 15 min before PTZ (35 mg/kg) during the kindling process and seizure behaviors were observed; 2) Single doses of RIVA (0.25, 0.5, and 1 mg/kg; i.p.) was administered to the electrode implanted kindled rats 15 min before PTZ and electrocorticogram (ECoG) recordings were obtained; 3) Low-dose of RIVA (0.5 mg/kg) was administered to the kindled rats for 14 consecutive days and after 24 h PTZ was administered and ECoG recordings were obtained. In addition, 24 h after the PTZ injection, the hippocampus was extracted and mRNA expression levels of N-methyl D-aspartate receptor subunit 2B (NR2B) and brain-derived neurotrophic factor (BDNF) were measured by qPCR analysis. Only low-dose of RIVA increased resistance against kindling. Single and long-term administration of low-dose RIVA increased the latency to the first myoclonic jerk, decreased the duration of generalized tonic-clonic seizures, and reduced the seizure stage in kindled rats. Long-term low-dose RIVA treatment decreased the mRNA expressions of NR2B and BDNF, which were increased after PTZ kindling. Low-dose of RIVA showed anticonvulsant properties, while high doses did not. RIVA exerts its anticonvulsant effect probably through NMDAR-BDNF pathways. Our results suggest that the use of RIVA may not be harmful and even reduce seizure severity in epileptic patients with convulsions.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Burcu Hatipoğlu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye.
| |
Collapse
|
4
|
El-Shafei SMA, El-Rahman AAA, Abuelsaad ASA, Al-Khalaf AA, Shehab GMG, Abdel-Aziz AM. Assessment of the potential protective effects of culture filtrate of Trichoderma harzianum to ameliorate the damaged histoarchitecture of brain in epileptic rats. Metab Brain Dis 2024; 39:1363-1385. [PMID: 39115642 DOI: 10.1007/s11011-024-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/14/2024] [Indexed: 10/29/2024]
Abstract
The simultaneous hyperexcitability of the neural network is the most well-known manifestation of epilepsy that causes recurrent seizures. The current study was aimed to examine any potential safety benefits of the culture filtrate of Trichoderma harzianum (ThCF) to ameliorate damaged histoarchitecture of the brain in epileptic rats by assessing seizure intensity scale and behavioral impairments and follow up the spontaneous motor seizures during status epilepticus phases in rats. Twenty-four rats were divided into four groups; control (C), epileptic (EP) valproic acid-treated epileptic (EP-VPA), and epileptic treated with T. harzianum cultured filtrate (ThCF). In addition to a seizure intensity score and behavioral tests, routine H&E and Golgi-Copsch histopathology, were used to examine the cell somas, dendrites, axons, and neural spines. ThCF treatment increased activity and recorded movements during grooming, rearing, and ambulation frequency. Brain tissues of epileptic rats exhibited detached meninges, hypercellularity, mild edema in the cortex and markedly degenerated neurons, degenerated glial cells, and microcyst formation in the hippocampus. Moreover, brains of EP-ThCF were noticed with average blood vessels, and increased dendritogenesis. The current data revealed some of negative effects of epileptogenesis brought on by seizure intensity score and retarded histopathological alterations in the hippocampus. Therefore, the study is forecasting to identify novel active components from the metabolites of T. harzianum with a crucial therapeutic role in various disorders.
Collapse
Affiliation(s)
- Sally M A El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Atef A Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Areej A Al-Khalaf
- Plant Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ayman M Abdel-Aziz
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
5
|
Vasović D, Stanojlović O, Hrnčić D, Šutulović N, Vesković M, Ristić AJ, Radunović N, Mladenović D. Dose-Dependent Induction of Differential Seizure Phenotypes by Pilocarpine in Rats: Considerations for Translational Potential. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1579. [PMID: 39459366 PMCID: PMC11509679 DOI: 10.3390/medicina60101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Pilocarpine is used in experimental studies for testing antiepileptic drugs, but further characterization of this model is essential for its usage in testing novel drugs. The aim of our study was to study the behavioral and EEG characteristics of acute seizures caused by different doses of pilocarpine in rats. Materials and Methods: Male Wistar rats were treated with a single intraperitoneal dose of 100 mg/kg (P100), 200 mg/kg (P200), or 300 mg/kg (P300) of pilocarpine, and epileptiform behavior and EEG changes followed within 4 h. Results: The intensity and the duration of seizures were significantly higher in P300 vs. the P200 and P100 groups, with status epilepticus dominating in P300 and self-limiting tonic-clonic seizures in the P200 group. The seizure grade was significantly higher in P200 vs. the P100 group only during the first hour after pilocarpine application. The latency of seizures was significantly shorter in P300 and P200 compared with P100 group. Conclusions: Pilocarpine (200 mg/kg) can be used as a suitable model for the initial screening of potential anti-seizure medications, while at a dose of 300 mg/kg, it can be used for study of the mechanisms of epileptogenesis.
Collapse
Affiliation(s)
- Dolika Vasović
- Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia;
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | - Aleksandar J. Ristić
- Neurology Clinic, Clinical Center of Serbia, Dr Subotića 6, 11000 Belgrade, Serbia
| | - Nebojša Radunović
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Ribeiro LR, Dos Santos AMF, da Cruz Guedes E, Bezerra TLDS, de Souza TL, Filho JMB, de Almeida RN, Salvadori MGDSS. Effects of acute administration of 4-allyl-2,6-dimethoxyphenol in mouse models of seizures. Epilepsy Res 2024; 205:107421. [PMID: 39068729 DOI: 10.1016/j.eplepsyres.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent unprovoked seizures, presents a substantial challenge in approximately one-third of cases exhibiting resistance to conventional pharmacological treatments. This study investigated the effect of 4-allyl-2,6-dimethoxyphenol, a phenolic compound derived from various natural sources, in different models of induced seizures and its impact on animal electroencephalographic (EEG) recordings. Adult male Swiss albino mice were pre-treated (i.p.) with a dose curve of 4-allyl-2,6-dimethoxyphenol (50, 100, or 200 mg/kg), its vehicle (Tween), or standard antiepileptic drug (Diazepam; or Phenytoin). Subsequently, the mice were subjected to different seizure-inducing models - pentylenetetrazole (PTZ), 3-mercaptopropionic acid (3-MPA), pilocarpine (PILO), or maximal electroshock seizure (MES). EEG analysis was performed on other animals surgically implanted with electrodes to evaluate brain activity. Significant results revealed that animals treated with 4-allyl-2,6-dimethoxyphenol exhibited increased latency to the first myoclonic jerk in the PTZ and PILO models; prolonged latency to the first tonic-clonic seizure in the PTZ, 3-MPA, and PILO models; reduced total duration of tonic-clonic seizures in the PTZ and PILO models; decreased intensity of convulsive seizures in the PTZ and 3-MPA models; and diminished mortality in the 3-MPA, PILO, and MES models. EEG analysis indicated an increase in the percentage of total power attributed to beta waves following 4-allyl-2,6-dimethoxyphenol administration. Notably, the substance protected from behavioral and electrographic seizures in the PTZ model, preventing increases in the average amplitude of recording signals while also inducing an increase in the participation of theta and gamma waves. These findings suggest promising outcomes for the tested phenolic compound across diverse pre-clinical seizure models, highlighting the need for further comprehensive studies to elucidate its underlying mechanisms and validate its clinical relevance in epilepsy management.
Collapse
Affiliation(s)
- Leandro Rodrigo Ribeiro
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil.
| | - Aline Matilde Ferreira Dos Santos
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Erika da Cruz Guedes
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Thamires Lucena da Silva Bezerra
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Thaíze Lopes de Souza
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - José Maria Barbosa Filho
- Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Mirian Graciela da Silva Stiebbe Salvadori
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
7
|
Gawel K, Hulas-Stasiak M, Marszalek-Grabska M, Grenda A, Siekierska A, Kosheva N, van der Ent W, Esguerra CV, Krawczyk P, Turski WA. Induction of seizures and initiation of epileptogenesis by pilocarpine in zebrafish larvae. Front Mol Neurosci 2024; 17:1418606. [PMID: 39165716 PMCID: PMC11333333 DOI: 10.3389/fnmol.2024.1418606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
Objective Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish. Methods Local field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis. Results Acute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains. Significance Here, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Monika Hulas-Stasiak
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Siekierska
- VirusBank Platform, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Pawel Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Wormuth C, Papazoglou A, Henseler C, Ehninger D, Broich K, Haenisch B, Hescheler J, Köhling R, Weiergräber M. A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Neural Plast 2024; 2024:9946769. [PMID: 39104708 PMCID: PMC11300100 DOI: 10.1155/2024/9946769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 post partum (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca2+ channel Cav3.2 and the auxiliary subunits β 1 and β 2, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Cav2.1, Cav2.3, M1, and M3) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.
Collapse
Affiliation(s)
- Carola Wormuth
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Translational BiogerontologyGerman Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Center for Translational MedicineMedical FacultyUniversity of Bonn, Bonn, Germany
| | - Jürgen Hescheler
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of PhysiologyUniversity of Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Marco Weiergräber
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
9
|
Wang F, Wang Y, Zhang QY, Hu KY, Song YJ, Yang L, Fei F, Xu CL, Cui SL, Ruan YP, Wang Y, Chen Z. Small-molecule caspase-1 inhibitor CZL80 terminates refractory status epilepticus via inhibition of glutamatergic transmission. Acta Pharmacol Sin 2024; 45:1381-1392. [PMID: 38514863 PMCID: PMC11192899 DOI: 10.1038/s41401-024-01257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1β pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ke-Yu Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying-Jie Song
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sun-Liang Cui
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ye-Ping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zhang N, Lin R, Xu H, Jing X, Zhou H, Wen X, Xie Q. Identification of Curcumin Targets in the Brain of Epileptic Mice Using DARTS. ACS OMEGA 2024; 9:22754-22763. [PMID: 38826549 PMCID: PMC11137688 DOI: 10.1021/acsomega.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
Curcumin, a compound derived from turmeric, is traditionally utilized in East Asian medicine for treating various health conditions, including epilepsy. Despite its involvement in numerous cellular signaling pathways, the specific mechanisms and targets of curcumin in epilepsy treatment have remained unclear. Our study focused on identifying the primary targets and functional pathways of curcumin in the brains of epileptic mice. Using drug affinity responsive target stabilization (DARTS) and affinity chromatography, we identified key targets in the mouse brain, revealing 232 and 70 potential curcumin targets, respectively. Bioinformatics analysis revealed a strong association of these proteins with focal adhesions and cytoskeletal components. Further experiments using DARTS, along with immunofluorescence staining and cell migration assays, confirmed curcumin's ability to regulate the dynamics of focal adhesions and influence cell migration. This study not only advances our understanding of curcumin's role in epilepsy treatment but also serves as a model for identifying therapeutic targets in neurological disorders.
Collapse
Affiliation(s)
- Ninan Zhang
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Ruifan Lin
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Honglin Xu
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Xianghong Jing
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Zhou
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxiao Wen
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Xie
- Wangjing
Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
11
|
Doyen M, Lambert C, Roeder E, Boutley H, Chen B, Pierson J, Verger A, Raffo E, Karcher G, Marie PY, Maskali F. Assessment of a one-week ketogenic diet on brain glycolytic metabolism and on the status epilepticus stage of a lithium-pilocarpine rat model. Sci Rep 2024; 14:5063. [PMID: 38424459 PMCID: PMC10904769 DOI: 10.1038/s41598-024-53824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in refractory epilepsy after long-term administration. However, its interference with short-term brain metabolism and its involvement in the early process leading to epilepsy remain poorly understood. This study aimed to assess the effect of a short-term ketogenic diet on cerebral glucose metabolic changes, before and after status epilepticus (SE) in rats, by using [18F]-FDG PET. Thirty-nine rats were subjected to a one-week KD (KD-rats, n = 24) or to a standard diet (SD-rats, n = 15) before the induction of a status epilepticus (SE) by lithium-pilocarpine administrations. Brain [18F]-FDG PET scans were performed before and 4 h after this induction. Morphological MRIs were acquired and used to spatially normalize the PET images which were then analyzed voxel-wisely using a statistical parametric-based method. Twenty-six rats were analyzed (KD-rats, n = 15; SD-rats, n = 11). The 7 days of the KD were associated with significant increases in the plasma β-hydroxybutyrate level, but with an unchanged glycemia. The PET images, recorded after the KD and before SE induction, showed an increased metabolism within sites involved in the appetitive behaviors: hypothalamic areas and periaqueductal gray, whereas no area of decreased metabolism was observed. At the 4th hour following the SE induction, large metabolism increases were observed in the KD- and SD-rats in areas known to be involved in the epileptogenesis process late-i.e., the hippocampus, parahippocampic, thalamic and hypothalamic areas, the periaqueductal gray, and the limbic structures (and in the motor cortex for the KD-rats only). However, no statistically significant difference was observed when comparing SD and KD groups at the 4th hour following the SE induction. A one-week ketogenic diet does not prevent the status epilepticus (SE) and associated metabolic brain abnormalities in the lithium-pilocarpine rat model. Further explorations are needed to determine whether a significant prevention could be achieved by more prolonged ketogenic diets and by testing this diet in less severe experimental models, and moreover, to analyze the diet effects on the later and chronic stages leading to epileptogenesis.
Collapse
Affiliation(s)
- Matthieu Doyen
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France.
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France.
| | - Clémentine Lambert
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Department of Neuropediatrics, Children's Hospital CHRU Nancy, 54000, Nancy, France
| | - Emilie Roeder
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Henri Boutley
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Bailiang Chen
- CHRU-Nancy, INSERM UMR 1433, CIC, Innovation Technologique, Université de Lorraine, 54000, Nancy, France
| | - Julien Pierson
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
| | - Antoine Verger
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Emmanuel Raffo
- Department of Neuropediatrics, Children's Hospital CHRU Nancy, 54000, Nancy, France
| | - Gilles Karcher
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Pierre-Yves Marie
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, IADI, INSERM UMR 1254, 54000, Nancy, France
- Department of Nuclear Medicine, University Hospital, 54000, Nancy, France
| | - Fatiha Maskali
- NANCYCLOTEP-Molecular and Experimental Imaging Platform, 54000, Nancy, France
- Lorraine University, INSERM DCAC1116, 54000, Nancy, France
| |
Collapse
|
12
|
Silva-Cardoso GK, N'Gouemo P. Influence of Inherited Seizure Susceptibility on Intermittent Voluntary Alcohol Consumption and Alcohol Withdrawal Seizures in Genetically Epilepsy-Prone Rats (GEPR-3s). Brain Sci 2024; 14:188. [PMID: 38391762 PMCID: PMC10886844 DOI: 10.3390/brainsci14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The link between epilepsy and alcohol consumption is complex, with conflicting reports. To enhance our understanding of this link, we conducted a study to determine how inherited seizure susceptibility affects voluntary alcohol consumption and influences alcohol withdrawal seizures in male and female genetically epilepsy-prone rats (GEPR-3s) compared to Sprague Dawley (SD) rats. METHODS In the first experiment, animals were given access to two bottles simultaneously, one containing water and the other 7.5%, 15%, or 30% (v/v) alcohol three times a week for each dose after acclimation to drinking water. In a second experiment, animals were tested for acoustically evoked alcohol seizures 24 h after the last session of voluntary alcohol consumption. RESULTS Analysis revealed that GEPR-3s (males and females) had lower alcohol intake and preference than SD rats, particularly at lower alcohol concentrations. However, female GEPR-3s consumed more alcohol and had a higher alcohol preference than males. Furthermore, withdrawal from voluntary alcohol consumption facilitated the onset and duration of seizures in GEPR-3s. CONCLUSIONS Our study suggests that genetic seizure susceptibility in GEPR-3s is negatively associated with alcohol consumption. However, withdrawal from low to moderate amounts of alcohol intake can promote epileptogenesis in the epileptic GEPR-3s.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
13
|
Jeffries L, Mis EK, McWalter K, Donkervoort S, Brodsky NN, Carpier JM, Ji W, Ionita C, Roy B, Morrow JS, Darbinyan A, Iyer K, Aul RB, Banka S, Chao KR, Cobbold L, Cohen S, Custodio HM, Drummond-Borg M, Elmslie F, Finanger E, Hainline BE, Helbig I, Hewson S, Hu Y, Jackson A, Josifova D, Konstantino M, Leach ME, Mak B, McCormick D, McGee E, Nelson S, Nguyen J, Nugent K, Ortega L, Goodkin HP, Roeder E, Roy S, Sapp K, Saade D, Sisodiya SM, Stals K, Towner S, Wilson W, Khokha MK, Bönnemann CG, Lucas CL, Lakhani SA. Biallelic CRELD1 variants cause a multisystem syndrome, including neurodevelopmental phenotypes, cardiac dysrhythmias, and frequent infections. Genet Med 2024; 26:101023. [PMID: 37947183 PMCID: PMC10932913 DOI: 10.1016/j.gim.2023.101023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.
Collapse
Affiliation(s)
- Lauren Jeffries
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | - Emily K Mis
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | | | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Nina N Brodsky
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT; Yale University School of Medicine, Department of Immunobiology, New Haven, CT
| | - Jean-Marie Carpier
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT
| | - Weizhen Ji
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | - Cristian Ionita
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT
| | - Bhaskar Roy
- Yale University School of Medicine, Department of Neurology, New Haven, CT
| | - Jon S Morrow
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Armine Darbinyan
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Krishna Iyer
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Ritu B Aul
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Katherine R Chao
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Laura Cobbold
- South West Thames Regional Genetics Service, St George's, University of London, London, United Kingdom
| | - Stacey Cohen
- Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; University of Pennsylvania Perelman School of Medicine, Department of Neurology, Philadelphia, PA
| | - Helena M Custodio
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | | | - Frances Elmslie
- South West Thames Regional Genetics Service, St George's, University of London, London, United Kingdom
| | | | - Bryan E Hainline
- Indiana University School of Medicine, Indiana University Health Physicians, Indianapolis, IN
| | - Ingo Helbig
- Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, PA; University of Pennsylvania Perelman School of Medicine, Department of Neurology, Philadelphia, PA
| | - Stacy Hewson
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Ontario, Canada
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dragana Josifova
- Guys and St Thomas NHS Trust, Clinical Genetics, London, United Kingdom
| | | | | | - Bryan Mak
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; Current affiliation: Genome Medical, South San Francisco, CA
| | - David McCormick
- King's College Hospital, Paediatric Neurosciences, London, United Kingdom
| | - Elisabeth McGee
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; University of California Los Angeles, Clinical Genomics Center, Los Angeles, CA; University of California Los Angeles, Center for Duchenne Muscular Dystrophy, Los Angeles, CA
| | - Stanley Nelson
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; University of California Los Angeles, Clinical Genomics Center, Los Angeles, CA; University of California Los Angeles, Center for Duchenne Muscular Dystrophy, Los Angeles, CA
| | - Joanne Nguyen
- Cook Children's Medical Center, Division of Genetics, Fort Worth, TX
| | - Kimberly Nugent
- Baylor College of Medicine, Department of Pediatrics, Houston, TX; Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX; Current affiliation: Cooper Surgical, Trumbull, CT
| | - Lucy Ortega
- Cook Children's Medical Center, Division of Genetics, Fort Worth, TX
| | | | - Elizabeth Roeder
- Baylor College of Medicine, Department of Pediatrics, Houston, TX; Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX
| | - Sani Roy
- Cook Children's Medical Center, Division of Endocrinology and Diabetes, Fort Worth, TX
| | - Katie Sapp
- Indiana University School of Medicine, Indiana University Health Physicians, Indianapolis, IN
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Current affiliation: University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | - Karen Stals
- Royal Devon & Exeter NHS Foundation Trust, Exeter Genomics Laboratory, Exeter, United Kingdom
| | - Shelley Towner
- University of Virginia School of Medicine, Charlottesville, VA
| | - William Wilson
- University of Virginia School of Medicine, Charlottesville, VA
| | - Mustafa K Khokha
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT; Yale University School of Medicine, Department of Genetics, New Haven, CT
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Carrie L Lucas
- Yale Pediatric Genomics Discovery Program, New Haven, CT; Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Saquib A Lakhani
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT.
| |
Collapse
|
14
|
Zheng F, Phelan KD, Shwe UT. Increased Susceptibility to Pilocarpine-Induced Status Epilepticus and Reduced Latency in TRPC1/4 Double Knockout Mice. Neurol Int 2023; 15:1469-1479. [PMID: 38132974 PMCID: PMC10745782 DOI: 10.3390/neurolint15040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Canonical transient receptor potential channels (TRPCs) are a family of calcium-permeable cation channels. Previous studies have shown that heteromeric channels comprising TRPC1 and TRPC4 mediate epileptiform bursting in lateral septal neurons and hippocampal CA1 pyramidal neurons, suggesting that TRPC1/4 channels play a pro-seizure role. In this study, we utilized electroencephalography (EEG) recording and spectral analysis to assess the role of TRPC1/4 channels in the pilocarpine model of status epilepticus (SE). We found that, surprisingly, TRPC1/4 double knockout (DKO) mice exhibited an increased susceptibility to pilocarpine-induced SE. Furthermore, SE latency was also significantly reduced in TRPC1/4 DKO mice. Further studies are needed to reveal the underlying mechanisms of our unexpected results.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - U Thaung Shwe
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Rubio C, Gatica F, Portila A, Vázquez D, Molina-García J, Piñón E, Rubio-Osornio M. Rats in Epilepsy Research: A Bibliometric Analysis of Citations Between 1969 and 2020 on Experimental Models in Epilepsy. Cureus 2023; 15:e48891. [PMID: 38106753 PMCID: PMC10725118 DOI: 10.7759/cureus.48891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Epilepsy stands as a prominent neurological disorder, affecting a substantial number of individuals who, unfortunately, do not respond to conventional antiepileptic medications. To unravel the intricate mechanisms underlying epileptic seizures and explore potential therapeutic avenues, researchers have turned to animal models. Among these models, rats have emerged as one of the cornerstones of epilepsy research. This bibliometric analysis embarks on the crucial task of delving into the role of rat models in deciphering the mysteries of epileptic seizures and, notably, pinpointing the most prevalent models in use. Our study harnessed Scopus' citation tracking feature to review a range of research papers dating from 1969 to 2020, all dedicated to the exploration of epileptic seizures in rats. The citations that emerged from this rigorous process were subjected to thematic coding, primarily centered around the specific epileptic animal models employed, and subsequently, comprehensive descriptive statistics were computed. In this effort, we found a total of 1,318 publications that explore the world of rat studies, accumulating a substantial citation count of 44,824 references. This analysis illuminated the invaluable role that research employing rat models has played in shaping our current clinical understanding of epileptic seizures. Notably, several models have emerged as predominant forces in this field, including those induced by pilocarpine, pentylenetetrazole (PTZ), kainic acid (KA), electric kindling, and electroshock. This bibliometric exploration serves as a resounding reminder of the pivotal position that rat models occupy in advancing our comprehension of epilepsy. These findings resonate strongly, underscoring the continued importance of directing research and development funding toward this debilitating disorder, with the ultimate aim of maximizing the benefits for the patients grappling with this condition. The potential to revolutionize our approach to epilepsy and enhance the quality of life for those affected remains a beacon of hope, illuminated by the contributions of these tireless researchers and their trusty rat companions.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - Fernando Gatica
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - Alonso Portila
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - David Vázquez
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - José Molina-García
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - Ernesto Piñón
- Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| | - Moisés Rubio-Osornio
- Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, MEX
| |
Collapse
|
16
|
Aly EK, Mahmoud HS, Alkhalifah DHM, Shehab GMG, Abuelsaad ASA, Abdel-Rehiem ES, Abdul-Hamid M. Bee venom ameliorates oxidative stress and histopathological changes of hippocampus, liver and testis during status epileptics. Neuropeptides 2023; 101:102368. [PMID: 37562116 DOI: 10.1016/j.npep.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The unrelenting progression of neurodegenerative diseases has a negative impact on affected individuals, their families, and society. Recurrent epileptic seizures are the hallmark of epilepsy, and treating it effectively remains difficult. Clarify and understanding effects of the antiepileptic drugs (AEDs) in epilepsy by comparing the therapeutic effects between rats receiving valproic acid (VPA) and Bee venom (BV) was aimed throughout the present study. Four male Wistar rat groups were included: control, epileptic group receiving pilocarpine (PILO), epileptic group treated with VPA and BV respectively. Cognitive functions were assessed by evaluating latency time in hot plate, despair swim test, grooming, rearing and ambulation frequency in the open field. BV has ameliorative effect on electrolytes balancing, assured by decreasing lipid peroxidation, nitric oxide and increasing catalase, superoxide dismutase and glutathione peroxidase activities. BV enhanced restoration of liver functions indicated by alanine transaminase (ALT) and aspartate transaminase (AST), total proteins, and albumin; hormonal parameters total and free testosterone, follicle stimulating hormone (FSH) and Luteinizing hormone (LH) were preserved by BV with great recovery of hippocampus, liver and testicular histopathology and ultrastructure comparing with the epileptic rats. The present findings suggested that BV and its active components offer fresh options for controlling epilepsy and prospective methods via minimize or manage the severe consequences.
Collapse
Affiliation(s)
- Esraa K Aly
- Cell Biology & Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hanan S Mahmoud
- Ecology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Manal Abdul-Hamid
- Cell Biology & Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt.
| |
Collapse
|
17
|
Che Has AT. The applications of the pilocarpine animal model of status epilepticus: 40 years of progress (1983-2023). Behav Brain Res 2023; 452:114551. [PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
Collapse
Affiliation(s)
- Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
18
|
de Melo AD, Freire VAF, Diogo ÍL, Santos HDL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1397. [PMID: 37507936 PMCID: PMC10376594 DOI: 10.3390/antiox12071397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/30/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by epileptic seizures resulting from neuronal hyperexcitability, which may be related to failures in Na,K-ATPase activity and oxidative stress participation. We conducted this study to investigate the impact of antioxidant therapy on oxidative stress, Na,K-ATPase activity, seizure factors, and mortality in rodent seizure/epilepsy models induced by pentylenetetrazol (PTZ), pilocarpine (PILO), and kainic acid (KA). After screening 561 records in the MEDLINE, EMBASE, Web of Science, Science Direct, and Scopus databases, 22 were included in the systematic review following the PRISMA guidelines. The meta-analysis included 14 studies and showed that in epileptic animals there was an increase in the oxidizing agents nitric oxide (NO) and malondialdehyde (MDA), with a reduction in endogenous antioxidants reduced glutathione (GSH) and superoxide dismutase (SO). The Na,K-ATPase activity was reduced in all areas evaluated. Antioxidant therapy reversed all of these parameters altered by seizure or epilepsy induction. In addition, there was a percentage decrease in the number of seizures and mortality, and a meta-analysis showed a longer seizure latency in animals using antioxidant therapy. Thus, this study suggests that the use of antioxidants promotes neuroprotective effects and mitigates the effects of epilepsy. The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO) CRD42022356960.
Collapse
Affiliation(s)
- Anderson Dutra de Melo
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais, Bambui 38900-000, Minas Gerais, Brazil
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Victor Antonio Ferreira Freire
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Ítalo Leonardo Diogo
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | | |
Collapse
|
19
|
Balaha MF, Alamer AA, Abdel-Kader MS, Alharthy KM. Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation. Int J Mol Sci 2023; 24:10773. [PMID: 37445950 DOI: 10.3390/ijms241310773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
One prevalent neurological disorder is epilepsy. Modulating GABAergic/glutamatergic neurotransmission, Nrf2/HO-1, PI3K/Akt, and TLR-4/NF-B pathways might be a therapeutic strategy for epilepsy. Eight-week-old BALB/c mice were administered 12.5, 25, or 50 mg/kg (-) pseudosemiglabrin orally one hour before inducing epilepsy with an i.p. injection of 360 mg/kg pilocarpine. (-) Pseudosemiglabrin dose-dependently alleviated pilocarpine-induced epilepsy, as revealed by the complete repression of pilocarpine-induced convulsions and 100% survival rate in mice. Furthermore, (-) pseudosemiglabrin significantly enhanced mice's locomotor activities, brain GABA, SLC1A2, GABARα1 levels, glutamate decarboxylase activity, and SLC1A2 and GABARα1mRNA expression while decreasing brain glutamate, SLC6A1, GRIN1 levels, GABA transaminase activity, and SLC6A1 and GRIN1 mRNA expression. These potentials can be due to the suppression of the TLR-4/NF-κB and the enhancement of the Nrf2/HO-1 and PI3K/Akt pathways, as demonstrated by the reduction in TLR-4, NF-κB, IL-1β, TNF-α mRNA expression, MDA, NO, caspase-3, Bax levels, and Bax/Bcl-2 ratio, and the enhancement of Nrf2, HO-1, PI3K, Akt mRNA expression, GSH, Bcl-2 levels, and SOD activity. Additionally, (-) pseudosemiglabrin abrogated the pilocarpine-induced histopathological changes. Interestingly, the (-) pseudosemiglabrin intervention showed a comparable effect to the standard medication, diazepam. Therefore, (-) pseudosemiglabrin can be a promising medication for the management of epilepsy.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
20
|
Mohamed AM, Ali DA, Kolieb E, Abdelaziz EZ. Ceftriaxone and selenium mitigate seizures and neuronal injury in pentylenetetrazole-kindled rats: Oxidative stress and inflammatory pathway. Int Immunopharmacol 2023; 120:110304. [PMID: 37224649 DOI: 10.1016/j.intimp.2023.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Epilepsy is one of the most serious worldwide neurological disorders that lead to the cognitive-psychosocial insults in recurrent seizures. About one third of the patients are drug-resistant, so innovative drugs are needed to manage seizures to improve the quality of life. Ceftriaxone is a cephalosporin antibiotic that increases the expression of glutamate transporters-1 and improves the neurobehavioral effects caused by increased glutamate level in the CNS. Selenium is well known antioxidant. The present study aimed to investigate ceftriaxone and selenium therapeutic effects against epilepsy in rats. Epilepsy was induced by PTZ given at a dose (50 mg/kg I.P) on alternative days for 13 days. Eighty rats were randomly divided into 8 groups: Group1-2; normal and vehicle control, Group 3; PTZ group, Group 4-8; kindled rats received selenium, ceftriaxone100, ceftriaxone200, selenium + ceftriaxone100 and selenium + ceftriaxone200 mg/kg/day respectively for a week. At the end of the study, behavioral tests were performed. Oxidative stress, inflammatory markers, neurotransmitters and GLT-1 were measured in brain tissue homogenate. Brain histopathological investigation was also done. PTZ-kindled rats exhibited increased Racine score, besides behavioral tests and histopathological changes, significant elevation in oxidative stress and inflammatory markers, with decrease in serotonin, dopamine, GABA levels and GLT-1 expressions. Selenium and Ceftriaxone alone or combined treatment decreased Racine score with remarkable improvement in behavioral and histopathological changes. The antioxidant enzymes, neurotransmitters and GLT-1 expressions were increased, along with reduced TNF-α, IL-1 levels. Current study showed that selenium + ceftriaxone100 group represents a possible approach to improve epilepsy particularly through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Asmaa M Mohamed
- Department of Pharmacology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Dina A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Eman Kolieb
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Z Abdelaziz
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Lévesque M, Wang S, Macey-Dare ADB, Salami P, Avoli M. Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiol Dis 2023; 180:106065. [PMID: 36907521 DOI: 10.1016/j.nbd.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada.
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada
| | - Anežka D B Macey-Dare
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pariya Salami
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, QC, Canada
| |
Collapse
|
22
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
23
|
Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. Int J Mol Sci 2023; 24:ijms24032039. [PMID: 36768361 PMCID: PMC9917109 DOI: 10.3390/ijms24032039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Status epilepticus (SE), a condition with abnormally prolonged seizures, is a severe type of epilepsy. At present, SE is not well controlled by clinical treatments. Antiepileptic drugs (AEDs) are the main therapeutic approaches, but they are effective for SE only with a narrow intervening window, and they easily induce resistance. Thus, in this review, we provide an updated summary for an insight into drug-resistant SE, hoping to add to the understanding of the mechanism of refractory SE and the development of active compounds. Firstly, we briefly outline the limitations of current drug treatments for SE by summarizing the extensive experimental literature and clinical data through a search of the PubMed database, and then summarize the common animal models of refractory SE with their advantages and disadvantages. Notably, we also briefly review some of the hypotheses about drug resistance in SE that are well accepted in the field, and furthermore, put forward future perspectives for follow-up research on SE.
Collapse
|
24
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Araújo Delmondes GD, Pereira Lopes MJ, Araújo IM, de Sousa Borges A, Batista PR, Melo Coutinho HD, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF, Kerntopf MR. Possible mechanisms involved in the neuroprotective effect of Trans,trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact 2022; 365:110059. [PMID: 35931201 DOI: 10.1016/j.cbi.2022.110059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate, through in vivo and in vitro methodologies, the effect of acute trans,trans-farnesol (12.5, 25, 50 or 100 mg/kg, p.o.) administration on behavioral and neurochemical parameters associated with pilocarpine-induced epileptic seizure (300 mg/kg, i.p.) in mice. The initial results showed that the compound in question presents no anxiolytic-like or myorelaxant effects, despite reducing locomotor activity in the animals at all doses tested. In addition, the lowest dose increased the latency to onset of the first epileptic seizure, and the time to death. In addition to decreasing the mortality percentage in mice submitted to the pilocarpine model. In this same model, pretreatment with the lowest dose of the compound decreased the hippocampal concentrations of thiobarbituric acid and nitrite, and partially restored striatal concentrations of noradrenaline, dopamine, and serotonin. Taken together, the results suggest that trans,trans-farnesol presents a central depressant effect which contributes to its antiepileptic action which, in turn, seems to be mediated by the antagonism of muscarinic cholinergic receptors, reduction of oxidative stress. and modulation of noradrenaline, dopamine and serotonin concentrations in the central nervous system.
Collapse
Affiliation(s)
- Gyllyandeson de Araújo Delmondes
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil.
| | | | - Isaac Moura Araújo
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Alex de Sousa Borges
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo Ricardo Batista
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | - Marta Regina Kerntopf
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| |
Collapse
|
26
|
Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience 2022; 499:142-151. [PMID: 35878719 DOI: 10.1016/j.neuroscience.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A is expression permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in subregions of these. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic phase. These data show that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.
Collapse
|
27
|
Zamora-Bello I, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Anticonvulsant Effect of Turmeric and Resveratrol in Lithium/Pilocarpine-Induced Status Epilepticus in Wistar Rats. Molecules 2022; 27:3835. [PMID: 35744955 PMCID: PMC9231157 DOI: 10.3390/molecules27123835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that lacks a cure. The use of plant-derived antioxidant molecules such as those contained in turmeric powder and resveratrol may produce short-term anticonvulsant effects. A total of 42 three-month-old male Wistar rats were divided into six groups (n = 7 in each group): Vehicle (purified water), turmeric (150 and 300 mg/kg, respectively), and resveratrol (30 and 60 mg/kg, respectively), administered per os (p.o.) every 24 h for 35 days. Carbamazepine (300 mg/kg/5 days) was used as a pharmacological control for anticonvulsant activity. At the end of the treatment, status epilepticus was induced using the lithium-pilocarpine model [3 mEq/kg, intraperitoneally (i.p.) and 30 mg/kg subcutaneously (s.c.), respectively]. Seizures were evaluated using the Racine scale. The 300 mg/kg of turmeric and 60 mg/kg of resveratrol groups had an increased latency to the first generalized seizure. The groups treated with 150 and 300 mg/kg of turmeric and 60 mg/kg of resveratrol also had an increased latency to status epilepticus and a decreased number of generalized seizures compared to the vehicle group. The chronic administration of turmeric and resveratrol exerts anticonvulsant effects without producing kidney or liver damage. This suggests that both of these natural products of plant origin could work as adjuvants in the treatment of epilepsy.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
28
|
Ha J, Son NH, Park YH, Lee E, Kim E, Jung Kim W. Association of cognitive enhancers and incident seizure risk in dementia: a population-based study. BMC Geriatr 2022; 22:480. [PMID: 35658833 PMCID: PMC9166339 DOI: 10.1186/s12877-022-03120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although individuals with dementia have a high risk of developing seizures, whether seizures are associated with cholinesterase inhibitors, which are commonly prescribed to treat individuals with dementia, remains unknown. This study investigated the risk of incident seizure following cholinesterase inhibitor use in patients with dementia.
Methods
A nationwide, nested case-control study was conducted using data from the Korean Health Insurance Review and Assessment Service (HIRA) from 2014 through 2018. A total of 13,767 participants aged 65–95 years who experienced incident seizure were propensity score-matched for medical comorbidities and drug exposure at a 1:3 ratio with a control group of 39,084 participants. The study examined the incidence of seizures in patients diagnosed with dementia within one year after receiving cognitive enhancers. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for seizure incidence according to cholinesterase inhibitor use were analyzed using a multivariable conditional logistic regression model.
Results
There was no statistically significant association between duration of cholinesterase inhibitors use and seizure risk. Although there was slight increased seizure risk in patient after receiving donepezil for 1 year compared to memantine, subgroup analyses stratified age and sex did not reveal any significant association between cholinesterase inhibitors use and late-onset seizure.
Conclusions
Our findings suggest no immediate increase in seizure risk is associated with cholinesterase inhibitor use, although the risk of seizure in patients with dementia did increase after one year of continued medication intake. Further study is required to obtain confirmatory results on the seizure-related safety of cognitive enhancers in patients with dementia.
Collapse
|
29
|
Shavit-Stein E, Berkowitz S, Davidy T, Fennig U, Gofrit SG, Dori A, Maggio N. Modulation of the Thrombin Pathway Restores LTP in a Pilocarpine Mice Model of Status Epilepticus. Front Cell Neurosci 2022; 16:900925. [PMID: 35685989 PMCID: PMC9170943 DOI: 10.3389/fncel.2022.900925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Status epilepticus (SE) leads to memory impairment following a seizure, attributed to long-term potentiation (LTP) reduction. Thrombin, a coagulation factor that activates protease-activated receptor 1 (PAR1) is involved in cognitive impairment following traumatic brain injury by reducing hippocampal LTP and in seizures as seen in a SE pilocarpine-induced mice model. Thrombin pathway inhibition prevents this cognitive impairment. We evaluated the effect of thrombin pathway inhibition in the pilocarpine-induced SE mice model, on LTP, hippocampal, and serum markers for inflammation, the PAR1 pathway, and neuronal cell damage. Methods SE was induced by injecting C57BL/6J mice with pilocarpine. Before pilocarpine injection, mice were injected with either the specific thrombin inhibitor α-NAPAP [Nα-(2-naphthalene-sulfonylglycyl)-4-amidino-DL-phenylalaninepiperidide], the PAR1 antagonist SCH79797, or vehicle-only solution. Recordings of excitatory postsynaptic potentials (EPSP) were conducted from hippocampal slices 24 h following pilocarpine injection. Hippocampal real-time PCR for the quantification of the PAR1, prothrombin, and tumor necrosis factor α (TNF-α) mRNA expression levels was conducted. Serum levels of neurofilament light chain (NfL) and TNF-α were measured by a single molecule array assay. Results The EPSP was reduced in the pilocarpine-induced SE mice (p < 0.001). This reduction was prevented by both NAPAP and SCH79797 treatments (p < 0.001 for both treatments). Hippocampal expression of TNF-α was elevated in the pilocarpine-induced SE group compared to the control (p < 0.01), however, serum levels of TNF-α were not changed. NfL levels were elevated in the pilocarpine-induced SE group (p = 0.04) but not in the treated groups. Conclusions Pilocarpine-induced SE reduces LTP, in a thrombin PAR1-related mechanism. Elevation of serum NfL supports neuronal damage accompanying this functional abnormality which may be prevented by PAR1 pathway modulation.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Davidy
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Uri Fennig
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shani Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Nicola Maggio
| |
Collapse
|
30
|
Wang D, Liu Y, Zhao D, Jin M, Li L, Ni H. Plppr5 gene inactivation causes a more severe neurological phenotype and abnormal mitochondrial homeostasis in a mouse model of juvenile seizure. Epilepsy Res 2022; 183:106944. [DOI: 10.1016/j.eplepsyres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
31
|
Casson RJ. Medical therapy for glaucoma: A review. Clin Exp Ophthalmol 2022; 50:198-212. [PMID: 35037367 DOI: 10.1111/ceo.13989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
A number of pharmacological targets are exploited to modify the parameters in the Goldmann equation and reduce the intraocular pressure (IOP). This strategy constitutes the foundation for the medical management of glaucoma, the evolution of which, until only recently, has been in relative stagnation. A burst of innovation has produced new ocular hypotensive drugs and long-acting delivery methods, including intracameral delivery, which are expanding the clinician's medical armamentarium. A number of IOP-independent neuroprotection strategies have shown strong potential in animal models of glaucoma, but translational attempts have been surprisingly limited. However, while pharmacological options are expanding, the traditional role of topical medical therapy is being challenged by selective laser trabeculoplasty, micro-invasive glaucoma surgery, and sustained delivery methods. A scientifically rigorous assessment of new treatments will be critical to empower clinicians with evidence-based information to optimise vision preservation and quality of life outcomes for their patients.
Collapse
Affiliation(s)
- Robert J Casson
- Ophthalmic Research Laboratories, Adelaide Health & Medical Science Building, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
32
|
Yokoi R, Shigemoto-Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC-derived cortical neural networks. J Pharmacol Sci 2022; 148:267-278. [DOI: 10.1016/j.jphs.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
|
33
|
In Vivo Sex-Dependent Effects of Perinatal Pb2+ Exposure on Pilocarpine-Induced Seizure Susceptibility and Taurine Neuropharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:481-496. [DOI: 10.1007/978-3-030-93337-1_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Characterization of metabolic activity induced by kainic acid in adult rat whole brain at the early stage: A 18FDG-PET study. Brain Res 2021; 1769:147621. [PMID: 34403661 DOI: 10.1016/j.brainres.2021.147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.
Collapse
|
35
|
Abd El-Hameed AM, Abuelsaad ASA, Khalil A. Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model. Metab Brain Dis 2021; 36:2047-2058. [PMID: 34138441 DOI: 10.1007/s11011-021-00766-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Bee venom (BV) is applied in different traditional medicinal therapies and is used worldwide to prevent and treat many acute and chronic diseases. Epilepsy has various neurological effects, e.g., epileptogenic insults; thus, it is considered a life-threatening condition. Seizures and their effects add to the burden of epilepsy because they can have health effects including residual disability and even premature mortality. The use of antiinflammatory drugs to treat epilepsy is controversial; therefore, the alternative nonchemical apitherapy benefits of BV were evaluated in the present study by assessing neuroinflammatory changes in a pilocarpine-induced epilepticus model. Levels of electrolytes, neurotransmitters, and mRNA expression for some gate channels were determined. Moreover, ELISA assays were conducted to detect pro- and anti-inflammatory cytokines, whereas RT-PCR was performed to assess mRNA expression of Foxp3 and CTLA-4. BV ameliorated the interruption in electrolytes and ions through voltage- and ligand-gated ion channels, and it limited neuronal excitability via rapid repolarization of action potentials. In addition, BV inhibited the high expression of proinflammatory cytokines. Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters, and modulates the levels of pro- and anti-inflammatory cytokines. Thus, BV could reduce the progression of epileptogenesis as a cotherapy with other antiepileptic drugs.
Collapse
Affiliation(s)
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Abdelwahab Khalil
- Medical Entomology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
36
|
Izadi A, Schedlbauer A, Ondek K, Disse G, Ekstrom AD, Cowen SL, Shahlaie K, Gurkoff GG. Early Intervention via Stimulation of the Medial Septal Nucleus Improves Cognition and Alters Markers of Epileptogenesis in Pilocarpine-Induced Epilepsy. Front Neurol 2021; 12:708957. [PMID: 34557145 PMCID: PMC8452867 DOI: 10.3389/fneur.2021.708957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Over one-third of patients with temporal lobe epilepsy are refractory to medication. In addition, anti-epileptic drugs often exacerbate cognitive comorbidities. Neuromodulation is an FDA treatment for refractory epilepsy, but patients often wait >20 years for a surgical referral for resection or neuromodulation. Using a rodent model, we test the hypothesis that 2 weeks of theta stimulation of the medial septum acutely following exposure to pilocarpine will alter the course of epileptogenesis resulting in persistent behavioral improvements. Electrodes were implanted in the medial septum, dorsal and ventral hippocampus, and the pre-frontal cortex of pilocarpine-treated rats. Rats received 30 min/day of 7.7 Hz or theta burst frequency on days 4-16 post-pilocarpine, prior to the development of spontaneous seizures. Seizure threshold, spikes, and oscillatory activity, as well as spatial and object-based learning, were assessed in the weeks following stimulation. Non-stimulated pilocarpine animals exhibited significantly decreased seizure threshold, increased spikes, and cognitive impairments as compared to vehicle controls. Furthermore, decreased ventral hippocampal power (6-10 Hz) correlated with both the development of spikes and impaired cognition. Measures of spikes, seizure threshold, and cognitive performance in both acute 7.7 Hz and theta burst stimulated animals were statistically similar to vehicle controls when tested during the chronic phase of epilepsy, weeks after stimulation was terminated. These data indicate that modulation of the septohippocampal circuit early after pilocarpine treatment alters the progression of epileptic activity, resulting in elevated seizure thresholds, fewer spikes, and improved cognitive outcome. Results from this study support that septal theta stimulation has the potential to serve in combination or as an alternative to high frequency thalamic stimulation in refractory cases and that further research into early intervention is critical.
Collapse
Affiliation(s)
- Ali Izadi
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Amber Schedlbauer
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States
| | - Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Gregory Disse
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
38
|
Kandeda AK, Taiwe GS, Ayissi REM, Moutchida C. An aqueous extract of Canarium schweinfurthii attenuates seizures and potentiates sleep in mice: Evidence for involvement of GABA Pathway. Biomed Pharmacother 2021; 142:111973. [PMID: 34343898 DOI: 10.1016/j.biopha.2021.111973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
About 30% of epileptic patients continue to have seizures. The present study investigates the anticonvulsant and sedative effects of an aqueous extract of C. schweinfurthii in mice. Anticonvulsant effects of C. schweinfurthii aqueous extract (0.01-300 mg/kg, p.o.) were tested against 4-aminopyridine (4-AP, 15 mg/kg, i.p.) -, pilocarpine (PILO, 380 mg/kg, i.p.) - and pentylenetetrazole (PTZ, 75 mg/kg, i.p.) -induced seizures, while sedative effects were tested on diazepam (35 mg/kg, i.p.)-induced sleep. Afterward, the most effective dose of the extract (11.9 mg/kg) was antagonized with N-methyl-β-carboline-3-carboxamide or flumazenil. In another set of experiments, mice were sacrificed for the estimation of GABA content and GABA-T activity in the cerebral cortex. The dose of the extract that protected 50% of mice (ED50) against 4-AP, PILO, and PTZ was respectively 4.43 mg/kg (versus 12.01 for phenobarbital), 9.59 mg/kg (vs 8.67 for diazepam), and 2.12 mg/kg (vs 0.20 for clonazepam). Further, the ED50 of the extract that increased the duration of sleep was 0.24 mg/kg (vs 0.84 for phenobarbital). N-methyl-β-carboline-3-carboxamide or flumazenil antagonized (p < 0.001) the anticonvulsant effect of C. schweinfurthii in PTZ-induced seizures and diazepam-induced sleep when compared to the negative control group. The extract at all doses increased (p < 0.001) the GABA content and decreased (p < 0.001) GABA-T activity. These findings suggest that C. schweinfurthii possesses anticonvulsant and sedative effects. These effects seem to be mediated via the modulation of the GABA neurotransmission. These data explain the use of this plant to treat epilepsy in Cameroon traditional medicine.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Rigobert Espoir Mbomo Ayissi
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Clémentine Moutchida
- Department of Psychology, University of Yaoundé I, P.O. Box 755, Yaoundé, Cameroon
| |
Collapse
|
39
|
Tilelli CQ, Flôres LR, Cota VR, Castro OWD, Garcia-Cairasco N. Amygdaloid complex anatomopathological findings in animal models of status epilepticus. Epilepsy Behav 2021; 121:106831. [PMID: 31864944 DOI: 10.1016/j.yebeh.2019.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Temporal lobe epileptic seizures are one of the most common and well-characterized types of epilepsies. The current knowledge on the pathology of temporal lobe epilepsy relies strongly on studies of epileptogenesis caused by experimentally induced status epilepticus (SE). Although several temporal lobe structures have been implicated in the epileptogenic process, the hippocampal formation is the temporal lobe structure studied in the greatest amount and detail. However, studies in human patients and animal models of temporal lobe epilepsy indicate that the amygdaloid complex can be also an important seizure generator, and several pathological processes have been shown in the amygdala during epileptogenesis. Therefore, in the present review, we systematically selected, organized, described, and analyzed the current knowledge on anatomopathological data associated with the amygdaloid complex during SE-induced epileptogenesis. Amygdaloid complex participation in the epileptogenic process is evidenced, among others, by alterations in energy metabolism, circulatory, and fluid regulation, neurotransmission, immediate early genes expression, tissue damage, cell suffering, inflammation, and neuroprotection. We conclude that major efforts should be made in order to include the amygdaloid complex as an important target area for evaluation in future research on SE-induced epileptogenesis. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Cristiane Queixa Tilelli
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil.
| | - Larissa Ribeiro Flôres
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil
| | - Vinicius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Campus Santo Antônio, Universidade Federal de São João del-Rei, Praça Frei Orlando, 170, Centro, São João Del Rei, MG 36307-352, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Campus A. C. Simões, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL 57072-970, Brazil
| | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, School of Medicine, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
40
|
The Anticonvulsant Effect of Hydroethanolic Leaf Extract of Calotropis procera (Ait) R. Br. (Apocynaceae). Neural Plast 2021; 2021:5566890. [PMID: 34257639 PMCID: PMC8257368 DOI: 10.1155/2021/5566890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/31/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
A number of currently used drugs have been obtained from medicinal plants which are a major source of drugs. These drugs are either used in their pure form or modified to a semisynthetic drug. Drug discovery through natural product research has been fruitful over the years. Traditionally, Calotropis procera is used extensively in the management of epilepsy. This study is conducted to explore the anticonvulsant effect of a hydroethanolic leaf extract of Calotropis procera (CPE) in murine models. This effect was evaluated using picrotoxin-induced convulsions, strychnine-induced convulsions, and isoniazid- and pilocarpine-induced status epilepticus in mice of both sexes. The results showed that CPE (100-300 mg/kg) exhibited an anticonvulsant effect against strychnine-induced clonic seizures by significantly reducing the duration (p = 0.0068) and frequency (p = 0.0016) of convulsions. The extract (100-300 mg/kg) caused a profound dose-dependent delay in the onset of clonic convulsions induced by picrotoxin (p < 0.0001) and tonic convulsions (p < 0.0001) in mice. The duration of convulsions was reduced significantly also for both clonic and tonic (p < 0.0001) seizures as well. CPE (100-300 mg/kg), showed a profound anticonvulsant effect and reduced mortality in the pilocarpine-induced convulsions. ED50 (~0.1007) determined demonstrated that the extract was less potent than diazepam in reducing the duration and onset of convulsions but had comparable efficacies. Flumazenil—a GABAA receptor antagonist—did not reverse the onset or duration of convulsions produced by the extract in the picrotoxin-induced seizure model. In isoniazid-induced seizure, CPE (300 mg kg1, p.o.) significantly (p < 0.001) delayed the onset of seizure in mice and prolonged latency to death in animals. Overall, the hydroethanolic leaf extract of Calotropis procera possesses anticonvulsant properties.
Collapse
|
41
|
Lu D, Ji Y, Sundaram P, Traub RD, Guan Y, Zhou J, Li T, Zhe Sun P, Luan G, Okada Y. Alkaline brain pH shift in rodent lithium-pilocarpine model of epilepsy with chronic seizures. Brain Res 2021; 1758:147345. [PMID: 33556378 PMCID: PMC7987840 DOI: 10.1016/j.brainres.2021.147345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Brain pH is thought to be important in epilepsy. The regulation of brain pH is, however, still poorly understood in animal models of chronic seizures (SZ) as well as in patients with intractable epilepsy. We used chemical exchange saturation transfer (CEST) MRI to noninvasively determine if the pH is alkaline shifted in a rodent model of the mesial temporal lobe (MTL) epilepsy with chronic SZ. Taking advantage of its high spatial resolution, we determined the pH values in specific brain regions believed to be important in this model produced by lithium-pilocarpine injection. All animals developed status epilepticus within 90 min after the lithium-pilocarpine administration, but one animal died within 24 hrs. All the surviving animals developed chronic SZ during the first 2 months. After SZ developed, brain pH was determined in the pilocarpine and control groups (n = 8 each). Epileptiform activity was documented in six pilocarpine rats with scalp EEG. The brain pH was estimated using two methods based on magnetization transfer asymmetry and amide proton transfer ratio. The pH was alkaline shifted in the pilocarpine rats (one outlier excluded) compared to the controls in the hippocampus (7.29 vs 7.17, t-test, p < 0.03) and the piriform cortex (7.34 vs. 7.06, p < 0.005), marginally more alkaline in the thalamus (7.13 vs. 7.01, p < 0.05), but not in the cerebral cortex (7.18 vs. 7.08, p > 0.05). Normalizing the brain pH may lead to an effective non-surgical method for treating intractable epilepsy as it is known that SZ can be eliminated by lowering the pH.
Collapse
Affiliation(s)
- Dongshuang Lu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Roger D Traub
- AI Foundations, IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598 USA
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Beijing, China; Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China.
| | - Yoshio Okada
- Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Dept. Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Lo AC, Rajan N, Gastaldo D, Telley L, Hilal ML, Buzzi A, Simonato M, Achsel T, Bagni C. Absence of RNA-binding protein FXR2P prevents prolonged phase of kainate-induced seizures. EMBO Rep 2021; 22:e51404. [PMID: 33779029 PMCID: PMC8024897 DOI: 10.15252/embr.202051404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Status epilepticus (SE) is a condition in which seizures are not self-terminating and thereby pose a serious threat to the patient's life. The molecular mechanisms underlying SE are likely heterogeneous and not well understood. Here, we reveal a role for the RNA-binding protein Fragile X-Related Protein 2 (FXR2P) in SE. Fxr2 KO mice display reduced sensitivity specifically to kainic acid-induced SE. Immunoprecipitation of FXR2P coupled to next-generation sequencing of associated mRNAs shows that FXR2P targets are enriched in genes that encode glutamatergic post-synaptic components. Of note, the FXR2P target transcriptome has a significant overlap with epilepsy and SE risk genes. In addition, Fxr2 KO mice fail to show sustained ERK1/2 phosphorylation induced by KA and present reduced burst activity in the hippocampus. Taken together, our findings show that the absence of FXR2P decreases the expression of glutamatergic proteins, and this decrease might prevent self-sustained seizures.
Collapse
Affiliation(s)
- Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Rajan
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Buzzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
43
|
Antiepileptic effects of long-term intracerebroventricular infusion of angiotensin-(1-7) in an animal model of temporal lobe epilepsy. Clin Sci (Lond) 2021; 134:2263-2277. [PMID: 32803259 DOI: 10.1042/cs20200514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most frequent type of epilepsy and is often refractory to pharmacological treatment. In this scenario, extensive research has identified components of the renin-angiotensin system (RAS) as potential therapeutic targets. Therefore, the aim of the present study was to evaluate the effects of long-term treatment with angiotensin-(1-7) [Ang-(1-7)] in male Wistar rats with TLE induced by pilocarpine (PILO). Rats with TLE were submitted to intracerebroventricular (icv) infusion of Ang-(1-7) (200 ng/kg/h) for 28 days, starting at the first spontaneous motor seizure (SMS). Body weight, food intake, and SMS were evaluated daily. Behavioral tests and hippocampal protein levels were also evaluated at the end of the treatment. Ang-(1-7) treatment reduced the frequency of SMS and attenuated low anxiety levels, increased locomotion/exploration, and reduced body weight gain that was induced by TLE. Moreover, Ang-(1-7) positively regulated the hippocampal levels of antioxidant protein catalase and antiapoptotic protein B-cell lymphoma 2 (Bcl-2), as well as mammalian target of rapamycin (mTOR) phosphorylation, which were reduced by TLE. The hippocampal up-regulation of angiotensin type 1 receptor induced by TLE was also attenuated by Ang-(1-7), while the Mas receptor (MasR) was down-regulated compared with epilepsy. These data show that Ang-(1-7) presents an antiepileptic effect, increasing neuroprotection markers and reducing SMS frequency, body weight, and behavior impairments found in TLE. Therefore, Ang-(1-7) is a promising coadjutant therapeutic option for the treatment of TLE.
Collapse
|
44
|
Pawlik MJ, Obara-Michlewska M, Popek MP, Czarnecka AM, Czuczwar SJ, Łuszczki J, Kołodziej M, Acewicz A, Wierzba-Bobrowicz T, Albrecht J. Pretreatment with a glutamine synthetase inhibitor MSO delays the onset of initial seizures induced by pilocarpine in juvenile rats. Brain Res 2021; 1753:147253. [PMID: 33422530 DOI: 10.1016/j.brainres.2020.147253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The contribution of glutamatergic transmission to generation of initial convulsive seizures (CS) is debated. We tested whether pretreatment with a glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), affects the onset and progression of initial CS by cholinergic stimulus in juvenile rats. Male rats (24 days old, Sprague Dawley) sequentially received i.p. injections of lithium-carbonate, MSO, methyl-scopolamine, and pilocarpine (Pilo). Pilo was given 150 min after MSO. Animals were continuously monitored using the Racine scale, EEG/EMG and intrahippocampal glutamate (Glu) biosensors. GS activity as measured in hippocampal homogenates, was not altered by MSO at 150 min, showed initial, varied inhibition at 165 (15 min post-Pilo), and dropped down to 11% of control at 60 min post-Pilo, whereas GS protein expression remained unaltered throughout. Pilo did neither modulate the effect of MSO on GS activity nor affect GS activity itself, at any time point. MSO reduced from 32% to 4% the number of animals showing CS during the first 12 min post-Pilo, delayed by ~6 min the appearance of electrographic seizures, and tended to decrease EMG power during ~15 min post-Pilo. The results indicate that MSO impairs an aspect of glutamatergic transmission involved in the transition from the first cholinergic stimulus to the onset of seizures. A continuous rise of extracellular Glu lasting 60 min was insignificantly affected by MSO, leaving the nature of the Glu pool(s) involved in altered glutamatergic transmission undefined.
Collapse
Affiliation(s)
- Marek J Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Mariusz P Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Jarogniew Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Teresa Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
45
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
46
|
Beesley S, Sullenberger T, Ailani R, D'Orio C, Crockett MS, Kumar SS. d-Serine Intervention In The Medial Entorhinal Area Alters TLE-Related Pathology In CA1 Hippocampus Via The Temporoammonic Pathway. Neuroscience 2021; 453:168-186. [PMID: 33197499 PMCID: PMC7796904 DOI: 10.1016/j.neuroscience.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/15/2023]
Abstract
Entrainment of the hippocampus by the medial entorhinal area (MEA) in Temporal Lobe Epilepsy (TLE), the most common type of drug-resistant epilepsy in adults, is believed to be mediated primarily through the perforant pathway (PP), which connects stellate cells in layer (L) II of the MEA with granule cells of the dentate gyrus (DG) to drive the hippocampal tri-synaptic circuit. Using immunohistochemistry, high-resolution confocal microscopy and the rat pilocarpine model of TLE, we show here that the lesser known temporoammonic pathway (TAP) plays a significant role in transferring MEA pathology to the CA1 region of the hippocampus independently of the PP. The pathology observed was region-specific and restricted primarily to the CA1c subfield of the hippocampus. As shown previously, daily intracranial infusion of d-serine (100 μm), an antagonist of GluN3-containing triheteromeric N-Methyl d-aspartate receptors (t-NMDARs), into the MEA prevented loss of LIII neurons and epileptogenesis. This intervention in the MEA led to the rescue of hippocampal CA1 neurons that would have otherwise perished in the epileptic animals, and down regulation of the expression of astrocytes and microglia thereby mitigating the effects of neuroinflammation. Interestingly, these changes were not observed to a similar extent in other regions of vulnerability like the hilus, DG or CA3, suggesting that the pathology manifest in CA1 is driven predominantly through the TAP. This work highlights TAP's role in the entrainment of the hippocampus and identifies specific areas for therapeutic intervention in dealing with TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Roshan Ailani
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Cameron D'Orio
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Mathew S Crockett
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States.
| |
Collapse
|
47
|
Tsegay E, Balasubramanian R, Tuem K, Gebre A. Beneficial effect of moringa stenopetala (bak.f) cuf. on lithium–pilocarpine-induced temporal lobe epilepsy in experimental animals. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_276_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Lévesque M, Biagini G, Avoli M. Neurosteroids and Focal Epileptic Disorders. Int J Mol Sci 2020; 21:ijms21249391. [PMID: 33321734 PMCID: PMC7763947 DOI: 10.3390/ijms21249391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neurosteroids are a family of compounds that are synthesized in principal excitatory neurons and glial cells, and derive from the transformation of cholesterol into pregnenolone. The most studied neurosteroids—allopregnanolone and allotetrahydrodeoxycorticosterone (THDOC)—are known to modulate GABAA receptor-mediated transmission, thus playing a role in controlling neuronal network excitability. Given the role of GABAA signaling in epileptic disorders, neurosteroids have profound effects on seizure generation and play a role in the development of chronic epileptic conditions (i.e., epileptogenesis). We review here studies showing the effects induced by neurosteroids on epileptiform synchronization in in vitro brain slices, on epileptic activity in in vivo models, i.e., in animals that were made epileptic with chemoconvulsant treatment, and in epileptic patients. These studies reveal that neurosteroids can modulate ictogenesis and the occurrence of pathological network activity such as interictal spikes and high-frequency oscillations (80–500 Hz). Moreover, they can delay the onset of spontaneous seizures in animal models of mesial temporal lobe epilepsy. Overall, this evidence suggests that neurosteroids represent a new target for the treatment of focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Correspondence: ; Tel.: +1-514-398-8909
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Department of Physiology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
49
|
Hosny EN, Elhadidy ME, Sawie HG, Kilany A, Khadrawy YA. Effect of frankincense oil on the neurochemical changes induced in rat model of status epilepticus. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-019-0139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current objective is to evaluate the effect of frankincense oil on the convulsions and the associated neurochemical alterations produced in pilocarpine-induced status epilepticus rat model.
Methods
Rats were divided randomly into: control, status epilepticus rat model and rat model of status epilepticus pretreated with frankincense oil daily for 5 days before pilocarpine treatment. On the fifth day, after pilocarpine injection, rats were observed to evaluate the severity of seizures for 2 h. The oxidative stress parameters malondialdehyde, reduced glutathione and nitric oxide, the proinflammatory cytokines interleukin-6 and interleukin-1β and acetylcholinesterase were determined in the cortex, hippocampus and striatum. Dopamine, norepinephrine and serotonin were measured in the cortex and striatum.
Results
The status epilepticus model exhibited repetitive seizures in the form of generalized tonic- clonic convulsions after 30 min. of pilocarpine injection. This was associated with a significant increase in the levels of malondialdehyde and nitric oxide and a significant decrease in reduced glutathione in the three regions. A significant increase was also observed in interleukin-1β, interleukin-6 and acetylcholinesterase. In the cortex and striatum, a significant decrease was recorded in monoamine levels. Pretreatment of rat model of status epilepticus with frankincense oil decreased the severity of seizures that appeared in the form of tremors and facial automatisms and prevented the increase in malondialdehyde, nitric oxide, interleukin-1β, interleukin-6 and acetylcholinesterase and the decrease in reduced glutathione induced by pilocarpine in the studied brain regions. Frankincense oil failed to restore the decreased level of cortical serotonin and dopamine. In the striatum, frankincense oil improved the levels of serotonin and norepinephrine but failed to restore the decreased dopamine levels.
Conclusion
It is clear from the present results that frankincense oil reduced the severity of seizures induced by pilocarpine. This could be mediated by its potent antioxidant and anti-inflammatory effects.
Collapse
|
50
|
Lévesque M, Avoli M. The subiculum and its role in focal epileptic disorders. Rev Neurosci 2020; 32:249-273. [PMID: 33661586 DOI: 10.1515/revneuro-2020-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 01/07/2023]
Abstract
The subicular complex (hereafter referred as subiculum), which is reciprocally connected with the hippocampus and rhinal cortices, exerts a major control on hippocampal outputs. Over the last three decades, several studies have revealed that the subiculum plays a pivotal role in learning and memory but also in pathological conditions such as mesial temporal lobe epilepsy (MTLE). Indeed, subicular networks actively contribute to seizure generation and this structure is relatively spared from the cell loss encountered in this focal epileptic disorder. In this review, we will address: (i) the functional properties of subicular principal cells under normal and pathological conditions; (ii) the subiculum role in sustaining seizures in in vivo models of MTLE and in in vitro models of epileptiform synchronization; (iii) its presumptive role in human MTLE; and (iv) evidence underscoring the relationship between subiculum and antiepileptic drug effects. The studies reviewed here reinforce the view that the subiculum represents a limbic area with relevant, as yet unexplored, roles in focal epilepsy.
Collapse
Affiliation(s)
- Maxime Lévesque
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| | - Massimo Avoli
- Departments of Neurology, Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| |
Collapse
|