1
|
Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation. iScience 2023; 26:106086. [PMID: 36843838 PMCID: PMC9950948 DOI: 10.1016/j.isci.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized protein vesicles that are similar in membrane dynamics to the cell and that reconstitute membrane proteins are difficult to form. In this study, we generated cell-sized asymmetric phospholipid-amphiphilic protein (oleosin) vesicles that allow the reconstitution of membrane proteins and the growth and fission of vesicles. These vesicles are composed of a lipid membrane on the outer leaflet and an oleosin membrane on the inner leaflet. Further, we elucidated a mechanism for the growth and fission of cell-sized asymmetric phospholipid-oleosin vesicles by feeding phospholipid micelles. Our asymmetric phospholipid-oleosin vesicles with the advantages of the lipid leaflet and the protein leaflet will potentially promote understanding of biochemistry and synthetic biology.
Collapse
|
2
|
Martin N, Douliez J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
| | - Jean‐Paul Douliez
- Univ. Bordeaux INRAE Biologie du Fruit et Pathologie UMR 1332 71 Avenue Edouard Bourlaux 33140 Villenave d'Ornon France
| |
Collapse
|
3
|
Ibrahimova V, Zhao H, Ibarboure E, Garanger E, Lecommandoux S. Thermosensitive Vesicles from Chemically Encoded Lipid‐Grafted Elastin‐like Polypeptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vusala Ibrahimova
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Hang Zhao
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Emmanuel Ibarboure
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | - Elisabeth Garanger
- University of Bordeaux CNRS Bordeaux INP, LCPO, UMR 5629 33600 Pessac France
| | | |
Collapse
|
4
|
Ibrahimova V, Zhao H, Ibarboure E, Garanger E, Lecommandoux S. Thermosensitive Vesicles from Chemically Encoded Lipid-Grafted Elastin-like Polypeptides. Angew Chem Int Ed Engl 2021; 60:15036-15040. [PMID: 33856091 DOI: 10.1002/anie.202102807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Biomimetic design to afford smart functional biomaterials with exquisite properties represents synthetic challenges and provides unique perspectives. In this context, elastin-like polypeptides (ELPs) recently became highly attractive building blocks in the development of lipoprotein-based membranes. In addition to the bioengineered post-translational modifications of genetically encoded recombinant ELPs developed so far, we report here a simple and versatile method to design biohybrid brush-like lipid-grafted-ELPs using chemical post-modification reactions. We have explored a combination of methionine alkylation and click chemistry to create a new class of hybrid lipoprotein mimics. Our design allowed the formation of biomimetic vesicles with controlled permeability, correlated to the temperature-responsiveness of ELPs.
Collapse
Affiliation(s)
- Vusala Ibrahimova
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Hang Zhao
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Emmanuel Ibarboure
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Elisabeth Garanger
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | | |
Collapse
|
5
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase‐Separated Giant Unilamellar Vesicles**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Kevin Jahnke
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstraße 29 69120 Heidelberg Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
6
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles*. Angew Chem Int Ed Engl 2021; 60:10661-10669. [PMID: 33355974 PMCID: PMC8252472 DOI: 10.1002/anie.202014174] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Indexed: 01/01/2023]
Abstract
Success in the bottom‐up assembly of synthetic cells will depend on strategies for the division of protocellular compartments. Here, we describe the controlled division of phase‐separated giant unilamellar lipid vesicles (GUVs). We derive an analytical model based on the vesicle geometry, which makes four quantitative predictions that we verify experimentally. We find that the osmolarity ratio required for division is 2
, independent of the GUV size, while asymmetric division happens at lower osmolarity ratios. Remarkably, we show that a suitable osmolarity change can be triggered by water evaporation, enzymatic decomposition of sucrose or light‐triggered uncaging of CMNB‐fluorescein. The latter provides full spatiotemporal control, such that a target GUV undergoes division whereas the surrounding GUVs remain unaffected. Finally, we grow phase‐separated vesicles from single‐phased vesicles by targeted fusion of the opposite lipid type with programmable DNA tags to enable subsequent division cycles.
Collapse
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Affiliation(s)
- Tan‐Phat Huynh
- Laboratory of Molecular Science and Engineering Åbo Akademi University Porthaninkatu 3–5 20500 Turku Finland
| |
Collapse
|
8
|
Frank T, Vogele K, Dupin A, Simmel FC, Pirzer T. Growth of Giant Peptide Vesicles Driven by Compartmentalized Transcription-Translation Activity. Chemistry 2020; 26:17356-17360. [PMID: 32777105 PMCID: PMC7839564 DOI: 10.1002/chem.202003366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 01/17/2023]
Abstract
Compartmentalization and spatial organization of biochemical reactions are essential for the establishment of complex metabolic pathways inside synthetic cells. Phospholipid and fatty acid membranes are the most natural candidates for this purpose, but also polymers have shown great potential as enclosures of artificial cell mimics. Herein, we report on the formation of giant vesicles in a size range of 1 μm-100 μm using amphiphilic elastin-like polypeptides. The peptide vesicles can accommodate cell-free gene expression reactions, which is demonstrated by the transcription of a fluorescent RNA aptamer and the production of a fluorescent protein. Importantly, gene expression inside the vesicles leads to a strong growth of their size-up to an order of magnitude in volume in several cases-which is driven by changes in osmotic pressure, resulting in fusion events and uptake of membrane peptides from the environment.
Collapse
Affiliation(s)
- Thomas Frank
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Kilian Vogele
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Aurore Dupin
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Friedrich C. Simmel
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Tobias Pirzer
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| |
Collapse
|
9
|
Neue Mitglieder des Kuratoriums und des Internationalen Beirats. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
New Members of the Editorial Board and International Advisory Board. Angew Chem Int Ed Engl 2020; 59:31. [DOI: 10.1002/anie.201915321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|