1
|
Yang JH, Liu WZ, Sun Y, Zhao QK, Zhang XT, Xia ZL, Au W, Sun P. An exploration of biomarkers for noise exposure: mitochondrial DNA copy number and micronucleus frequencies in Chinese workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2430-2440. [PMID: 37669754 DOI: 10.1080/09603123.2023.2253739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Few studies have been conducted that use biomarkers as early warning signals for noise-associated health hazards. To explore potentially effective biomarkers for noise-exposed populations, we recruited 218 noise-exposed male workers in China. We calculated cumulative noise exposure (CNE) through noise intensity and noise-exposed duration. When the model was fully adjusted, ln-transformed relative mitochondrial DNA copy number (mtDNAcn) decreased by 0.014 (95% confidence interval (CI): -0.026, -0.003) units with each 1 dB(A)∙year increase in CNE levels. CNE was further included in the model as a grouping variable, and the results showed a negative dose-effect relationship between relative mtDNAcn and CNE (P-trend = 0.045). However, we did not find a correlation between CNE and micronucleus (MN) frequencies. Our findings suggest that CNE in workers was associated with a decrease in relative mtDNAcn which may provide a potential biomarker for noise and for certain health risk but not with MN frequencies.
Collapse
Affiliation(s)
- Jia-Hao Yang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Wu-Zhong Liu
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Yuan Sun
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Qian-Kui Zhao
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Xue-Tao Zhang
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - William Au
- Pharmacy, Science and Technology, University of Medicine, Targu Mures, Romania
- Occupational Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Pin Sun
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Turner JG. Noise and Vibration in the Vivarium: Recommendations for Developing a Measurement Plan. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:665-672. [PMID: 32928338 DOI: 10.30802/aalas-jaalas-19-000131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Noise and vibration are present in every room of laboratory animal vivaria, with great variability from room-to-room and facility-to-facility. Such stimuli are rarely measured. As a result, the many stakeholders involved in biomedical research, (for example, funding agencies, construction personnel, equipment manufacturers, animal facility administrators, veterinarians, technicians, and scientists) have little awareness of the effects such stimuli may have on their research animals. Noise and vibration present a potential source of unrecognized animal distress, and a significant, uncontrolled and confounding variable in scientific studies. Unmeasured and unrecognized noise and vibration can therefore undermine the fundamental goals of the 3R's to refine animal models and reduce the number of animals used in biomedical and behavioral research. This overview serves to highlight the scope of this problem and proposes a series of recommended practices to limit its negative effects on research animals and the scientific data derived from them. These practices consist of developing a written plan for managing noise and vibration concerns, assessment of noise and vibration both annually and whenever unexpected changes in the facility or animals are observed, and for maintaining levels of chronic noise below thresholds that might cause animal welfare concerns or disruptions in ongoing studies.
Collapse
Affiliation(s)
- Jeremy G Turner
- Department of Psychology, Illinois College, Jacksonville, Illinois; Turner Scientific, Jacksonville, Illinois; , ,
| |
Collapse
|
3
|
Vasilyeva IN, Bespalov VG, Semenov AL, Baranenko DA, Zinkin VN. The Effects of Low-Frequency Noise on Rats: Evidence of Chromosomal Aberrations in the Bone Marrow Cells and the Release of Low-Molecular-Weight DNA in the Blood Plasma. Noise Health 2018; 19:79-83. [PMID: 29192617 PMCID: PMC5437756 DOI: 10.4103/nah.nah_39_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objectives: Evaluation of the effect of low-frequency noise (LFN) on the frequency of chromosomal aberrations in the bone marrow cells and on the content of low-molecular-weight DNA (lmwDNA) in the blood plasma of rats. Materials and Methods: A total of 96 male Wistar rats were exposed to either single (17 min session) or multiple (17 min session repeated five times a week for 13 weeks) LFN, with the maximum range below 250 Hz and the sound pressure levels (SPLs) at 120 and 150 dB, respectively. The rats in the control groups were not subjected to any impact. The frequency of chromosomal aberrations in the bone marrow cells and the levels of lmwDNA in the blood plasma were measured afterwards. Results: It has been detected that a single LFN exposure with either corresponding SPLs had a significant increase in the frequency of chromosomal aberrations (more than 10-fold) compared to the controls (0.9 ± 0.3%) and resulted in the appearance of dicentric chromosomes in the aberration spectrum, both of which are evident for the occurrence of deoxyribonucleic acid double strand breaks triggered by the exposure. Furthermore, the lmwDNA levels in the blood plasma measured the following day after a single LFN exposure were significantly higher (7.7- and 7.6-fold, respectively) than that in the control group (11.0 ± 5.4 ng/ml), and such levels were maintained higher (4.8- and 2.1-fold, respectively) in the week after a single LFN exposure for the SPL of 120 and 150 dB, respectively, compared to the control group (18.8 ± 1.6 ng/ml). Similar results were obtained from the group with multiple LFN exposures (36.4- and 22.4-fold, respectively) compared to the control (17.7 ± 1.7 ng/ml) and suggest the enhancement of cellular apoptosis as a result of the LFN impact. Conclusion: Presumably, the LFN may have possible mutagenic effects and cause massive cell death.
Collapse
Affiliation(s)
- Irina N Vasilyeva
- Scientific Laboratory for Cancer Chemoprevention and Oncopharmacology at N.N. Petrov Research Institute of Oncology under the Ministry of Health of the Russian Federation, Moscow; International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
| | - Vladimir G Bespalov
- Scientific Laboratory for Cancer Chemoprevention and Oncopharmacology at N.N. Petrov Research Institute of Oncology under the Ministry of Health of the Russian Federation, Moscow; International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
| | - Alexander L Semenov
- Scientific Laboratory for Cancer Chemoprevention and Oncopharmacology at N.N. Petrov Research Institute of Oncology under the Ministry of Health of the Russian Federation, Moscow; International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
| | - Denis A Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
| | - Valery N Zinkin
- Research and Testing Center of Aerospace Medicine and Military Ergonomics at 4th Central Research Institute under the Ministry of Defence of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
4
|
Comparative Analysis of Harmful Physical Factors Effect on the Cell Genome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27753023 DOI: 10.1007/978-3-319-42044-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Exposure to either to low-frequency noise or ionizing radiation causes an increase in the number of chromosomal aberrations in the bone marrow cells and the level of low-molecular-weight DNA in the blood plasma of experimental animals. The dynamics of the content of low-molecular-weight DNA increasing after exposure to low-frequency noise and ionizing radiation differs significantly. Both exposures are able to provide a direct damaging effect on DNA.
Collapse
|
5
|
Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Sci Rep 2014; 4:5891. [PMID: 25080997 PMCID: PMC4118180 DOI: 10.1038/srep05891] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/04/2014] [Indexed: 11/08/2022] Open
Abstract
Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.
Collapse
|
6
|
Savina NV, Smal MP, Kuzhir TD, Ershova-Pavlova AA, Goncharova RI. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry. Mutat Res 2012; 748:21-8. [PMID: 22772077 DOI: 10.1016/j.mrgentox.2012.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/08/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored.
Collapse
Affiliation(s)
- Natalya V Savina
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | | | | |
Collapse
|
7
|
Maeda S, Yu X, Wang RS, Sakakibara H. A pilot study of gene expression analysis in workers with hand-arm vibration syndrome. INDUSTRIAL HEALTH 2008; 46:188-193. [PMID: 18413973 DOI: 10.2486/indhealth.46.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this pilot study was to examine differences in gene expressions by cDNA microarray analysis of hand-arm vibration syndrome (HAVS) patients. Vein blood samples were collected and total RNA was extracted. All blood samples were obtained in the morning in one visit after a standard light breakfast. We performed microarray analysis with the labeled cDNA prepared by reverse transcription from RNA samples, using the Human CHIP version 1 (DNA Chip Research Inc, Yokohama, Japan). There are 2,976 genes on the chip, and these genes were selected from a cDNA library prepared with human peripheral white blood cells (WBC). Different gene levels between the HAVS patients and controls, and between groups of HAVS with different levels of symptoms, were indicated by the randomized variance model. The most up-regulated genes were analyzed for their possible functions and association with the occurrence of HAVS. From the results of this pilot study, although the results were obtained a limited number of subjects, it would appear that cDNA microarray analysis of HAVS patients has potential as a new objective method of HAVS diagnosis. Further research is needed to examine the gene expression with increased numbers of patients at different stages of HAVS.
Collapse
Affiliation(s)
- Setsuo Maeda
- Measurement and Control of Work Environment Research Group, National Institute of Occupational Safety and Health, Kawasaki, Japan
| | | | | | | |
Collapse
|
8
|
Ferreira JR, Mendes CP, Alves-Pereira M, Castelo Branco NA. Carcinomas epidermóides do pulmão na doença vibroacústica. REVISTA PORTUGUESA DE PNEUMOLOGIA 2006. [DOI: 10.1016/s0873-2159(15)30451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Alves-Pereira M, Castelo Branco NAA. Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 93:256-79. [PMID: 17014895 DOI: 10.1016/j.pbiomolbio.2006.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, infrasound (0-20 Hz) and low-frequency noise (20-500 Hz) (ILFN, 0-500 Hz) are agents of disease that go unchecked. Vibroacoustic disease (VAD) is a whole-body pathology that develops in individuals excessively exposed to ILFN. VAD has been diagnosed within several professional groups employed within the aeronautical industry, and in other heavy industries. However, given the ubiquitous nature of ILFN and the absence of legislation concerning ILFN, VAD is increasingly being diagnosed among members of the general population, including children. VAD is associated with the abnormal growth of extra-cellular matrices (collagen and elastin), in the absence of an inflammatory process. In VAD, the end-product of collagen and elastin growth is reinforcement of structural integrity. This is seen in blood vessels, cardiac structures, trachea, lung, and kidney of both VAD patients and ILFN-exposed animals. VAD is, essentially, a mechanotransduction disease. Inter- and intra-cellular communication is achieved through both biochemical and mechanotranduction signalling. When the structural components of tissue are altered, as is seen in ILFN-exposed specimens, the mechanically mediated signalling is, at best, impaired. Common medical diagnostic tests, such as EKG, EEG, as well as many blood chemistry analyses, are based on the mal-function of biochemical signalling processes. VAD patients typically present normal values for these tests. However, when echocardiography, brain MRI or histological studies are performed, where structural changes can be identified, all consistently show significant changes in VAD patients and ILFN-exposed animals. Frequency-specific effects are not yet known, valid dose-responses have been difficult to identify, and large-scale epidemiological studies are still lacking.
Collapse
Affiliation(s)
- Mariana Alves-Pereira
- ERISA, Lusofona University, Avenida Primeiro de Maio, No. 27, 5B, Costa da Caparica, 2825 397 Lisbon, Portugal.
| | | |
Collapse
|
10
|
Ferreira JR, Monteiro MB, Tavares F, Serrano I, Monteiro E, Mendes CP, Alves-Pereira M, Branco NAAC. Participação das vias aéreas centrais na doença vibroacústica. REVISTA PORTUGUESA DE PNEUMOLOGIA 2006. [DOI: 10.1016/s0873-2159(15)30426-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Alves-Pereira M, Reis Ferreira JM, Joanaz de Melo J, Motylewski J, Kotlicka E, Castelo Branco NAA. Noise and the respiratory system. REVISTA PORTUGUESA DE PNEUMOLOGIA 2004; 9:367-79. [PMID: 15188062 DOI: 10.1016/s0873-2159(15)30690-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Noise-induced pulmonary pathology is still an issue that is regarded with much suspicion despite the significant body of evidence demonstrating that acoustic phenomena target the respiratory tract. The goal of this review paper is threefold: a) to describe acoustic phenomena as an agent of disease, and the inadequacies of current legislation regarding noise-induced, non-auditory pathology; b) to trace how the interest in noise-induced pulmonary pathology emerged within the scope of studies on vibroacoustic disease; and c) to bring to light other studies denouncing noise as an agent of disease that impinges on the respiratory tract. As concluding remarks, future perspectives in LFN-related research will be discussed. The need for animal models will be emphasized.
Collapse
Affiliation(s)
- Mariana Alves-Pereira
- Mestre em Engenharia Biomédica, Doutoranda no Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa
| | | | | | | | | | | |
Collapse
|
12
|
Castelo Branco NA, Monteiro E, Costa e Silva A, Ferreira JMR, Alves-Pereira M. O epitélio respiratório em ratos Wistar nascidos em ruído de baixa frequência e expostos a ruído adicional. REVISTA PORTUGUESA DE PNEUMOLOGIA 2003. [DOI: 10.1016/s0873-2159(15)30702-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|