1
|
Cochón AC, González N, San Martín de Viale LC. Effects of the porphyrinogenic compounds hexachlorobenzene and 3,5-diethoxycarbonyl-1,4-dihydrocollidine on polyamine metabolism. Toxicology 2002; 176:209-19. [PMID: 12093617 DOI: 10.1016/s0300-483x(02)00145-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The naturally occurring polyamines--putrescine, spermidine and spermine--are organic cations present in all living cells and essential for cell growth and differentiation. The aim of the present study was to extend the investigations on the effects of porphyrinogenic compounds on polyamine metabolism. This was achieved by studying putrescine, spermidine and spermine levels in a model of acute porphyria, i.e. 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced porphyria, and in a model of non-acute porphyria, i.e. hexachlorobenzene (HCB)-induced porphyria. HCB administration to female Wistar rats for 7, 14, 21, 28 and 56 days did not alter polyamine levels in liver, even though rats presented clear signs of HCB-induced porphyria. In contrast to HCB, DDC treatment resulted in a remarkable increase in putrescine levels in the liver of female and male Sprague-Dawley rats. This increase was due, at least in part, to ornithine decarboxylase (ODC) activation. DDC induction of putrescine levels did not show organ specificity, since it could also be seen in adrenal gland. Interestingly, the deregulation of polyamine biosynthesis occurred concomitantly with the deregulation of the heme biosynthetic pathway. In addition to porphyria, it is known that DDC intoxication affects several proteins of the hepatocyte cytoskeleton. It is suggested that DDC-induced increase in ODC activity and putrescine levels may be an early event contributing to alter the cytoskeleton.
Collapse
Affiliation(s)
- Adriana Cristina Cochón
- Laboratorio de Porfirias Experimentales y Metabolismo del Hemo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
2
|
Abstract
The effect of Toxaphene on fish reproduction was investigated in sexually mature female zebrafish fed for two weeks with food contaminated with three different concentrations of the Pesticide (0.02, 0.23 and 2.2 micrograms/g fish/day). No overt differences were observed in reproductive success as assessed by examination of (a) total number of eggs spawned by each female, (b) percentage of fertilized eggs 24 hours after fertilization, (c) percentage of embryo mortality 72 hours after fertilization and (d) percentage of hatching 72 hours after fertilization. By contrast Toxaphene produced distinct effects of a dose response nature on oviposition. This observation is not only of interest with respect to Toxaphene, but also points to the importance of evaluating other pesticides for their effect on the oviposition of feral species that might be even more sensitive than zebrafish. Toxicity of Toxaphene was manifested both in the parent fish (skin discoloration, subcutaneous hemorrhages, particularly around the gill areas and backbones curved in the vertical plane) and in hatching embryos (half hatched).
Collapse
Affiliation(s)
- G E Ree
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| | | |
Collapse
|
3
|
Faroon O, Kueberuwa S, Smith L, DeRosa C. ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate. Toxicol Ind Health 1995; 11:1-203. [PMID: 8723616 DOI: 10.1177/074823379501100601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This document provides public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective of the toxicology of mirex and chlordecone. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. Additional substances will be profiled in a series of manuscripts to follow.
Collapse
Affiliation(s)
- O Faroon
- Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|
4
|
Kitchin KT, Brown JL, Kulkarni AP. Complementarity of genotoxic and nongenotoxic predictors of rodent carcinogenicity. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1994; 14:83-100. [PMID: 8066550 DOI: 10.1002/tcm.1770140205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Twenty-one chemicals carcinogenic in rodent bioassays were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 21 chemicals on four biochemical assays [hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)] were determined. Available data from seven cancer predictors published by others [the Ames test (AMES), mutation in Salmonella typhimurium TA 1537 (TA 1537), structural alerts (SA), mutation in mouse lymphoma cells (MOLY), chromosomal aberrations in Chinese hamster ovary cells (ABS), sister chromatid exchange in hamster ovary cells (SCE), and the ke test (ke)] were also compiled for these 21 chemical carcinogens plus 28 carcinogens and 62 noncarcinogens already published by our laboratory. From the resulting 111 (chemicals) by 11 (individual cancer predictors) data matrix, the five operational characteristics (sensitivity, specificity, positive predictivity, negative predictivity, and concordance) of each of the 11 individual cancer predictors (four biochemical parameters of this study and seven cancer predictors of others) are presented. Two examples of complementarity or synergy of composite cancer predictors were found. To obtain maximum concordance it was necessary to combine both genotoxic and nongenotoxic cancer predictors. The composite cancer predictor (DD or [ODC and P450] or [ODC and ALT]) had higher concordance than did any of the four individual cancer predictors from which it was constructed. Similarly, the composite cancer predictor (TA 1537 or DD or [ODC and P450] or [ODC and ALT]) had higher concordance than any of its five individual constituent cancer predictors. Complementarity or synergy has been demonstrated both 1) among genotoxic cancer predictors (DD and TA 1537) and 2) between nongenotoxic (ODC, P450, and ALT) and genotoxic cancer predictors (TA 1537 and DD).
Collapse
Affiliation(s)
- K T Kitchin
- Carcinogenesis and Metabolism Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | | | |
Collapse
|
5
|
Kitchin KT, Brown JL, Kulkarni AP. Predicting rodent carcinogenicity of Ames test false positives by in vivo biochemical parameters. Mutat Res 1993; 290:155-64. [PMID: 7694106 DOI: 10.1016/0027-5107(93)90155-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
28 chemicals known to be mutagenic in the Ames test but not carcinogenic in rodent bioassays were selected for study. The chemicals were administered by gavage in 2 dose levels to female Sprague-Dawley rats. The effects of these 28 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. The scientific approach taken was to either experimentally find individual cancer predictors of high specificity or to mathematically create composite predictors of high specificity. Composite predictive parameters are defined as follows: CP = [ODC and P450], CT = [ALT and ODC], and TS = [DD or CP or CT]. The specificity (percent of rodent noncarcinogens which test negative) of DD, ODC, ALT, P450, CP, CT and TS was 100%, 46%, 89%, 86%, 93%, 93% and 86%, respectively. For these 28 mutagenic noncarcinogens, the specificity of structural alerts (SA) 13%, mutation in mouse lymphoma cells (MOLY) 0%, chromosomal aberrations in Chinese hamster ovary cells (ABS) 13%, and sister-chromatid exchange in Chinese hamster ovary cells (SCE) 0% were much lower. The ke test, an experimental measure of electron attachment, had a specificity of 33%. DD was the only DNA related parameter to predict well the noncarcinogenic rodent bioassay result of Ames false-positive chemicals. 5 nongenotoxic parameters (ALT, P450, CP, CT and [CP or CT]) predicted the rodent bioassay result well. Depending on the prevalence of chemicals carcinogenic to humans, the problem of Ames test false positives for predicting human cancer may be either small or large.
Collapse
Affiliation(s)
- K T Kitchin
- Carcinogenesis and Metabolism Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | | | |
Collapse
|
6
|
Kitchin KT, Brown JL, Kulkarni AP. Predicting rodent carcinogenicity of halogenated hydrocarbons by in vivo biochemical parameters. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1993; 13:167-84. [PMID: 7903485 DOI: 10.1002/tcm.1770130403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Forty halogenated hydrocarbons of known rodent carcinogenicity (24 carcinogens, 16 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, and hepatocarcinogens, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 40 chemicals on four biochemical assays [hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)] were determined. Composite predictive parameters are defined as follows: CP = [ODC and P450], CT = [ALT and ODC], and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 58%, specificity 81%, positive predictivity 82%, negative predictivity 57%, and concordance 68%. The concordance for the Ames test (45%) and structural alerts (SA; 46%) was much lower. TS also outperformed the Ames test and SA in producing fewer false positives (the specificity of TS was 81% vs. only 63% for the Ames test and 57% for SA). For predicting the carcinogenicity of the most difficult halogenated hydrocarbons (Ames and SA negative chemicals), TS was capable of successfully predicting the carcinogenicity of 8 (carbon tetrachloride, chloroform, alpha-hexachlorocyclohexane, kepone, mirex, monuron, p,p'-DDE, and 2,4,6-trichlorophenol) out of 16 of these non-DNA-reactive halogenated hydrocarbon carcinogens. All 8 of these halogenated hydrocarbons were positive in either CP or CT. This evidence shows that nongenotoxic carcinogenesis is best predicted by nongenotoxic parameters such as CP or CT (components of the predictor TS).
Collapse
Affiliation(s)
- K T Kitchin
- Carcinogenesis and Metabolism Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | |
Collapse
|
7
|
Kitchin KT, Brown JL, Kulkarni AP. Predictive assay for rodent carcinogenicity using in vivo biochemical parameters: operational characteristics and complementarity. Mutat Res 1992; 266:253-72. [PMID: 1373835 DOI: 10.1016/0027-5107(92)90193-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.
Collapse
Affiliation(s)
- K T Kitchin
- Carcinogenesis and Metabolism Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | | | |
Collapse
|
8
|
Abstract
Female Sprague-Dawley rats were given 0, 168, 840, 2550 or 4200 mg/kg of 1,4-dioxane 21 and 4 h before sacrifice. Hepatic DNA damage (by the alkaline elution technique), ornithine decarboxylase activity (ODC), reduced glutathione content, cytochrome P-450 content and serum alanine aminotransferase activity (ALT) were determined. Treatment with 1,4-dioxane increased hepatic DNA damage and cytochrome P-450 content at doses of 2550 and 4200 mg/kg. Large increases in the activity of hepatic ODC were observed at 840, 2550 and 4200 mg/kg of 1,4-dioxane. Thus the data suggest that 1,4-dioxane is a weak genotoxic carcinogen in addition to being a strong promoter of carcinogenesis (a non-genotoxic carcinogen).
Collapse
Affiliation(s)
- K T Kitchin
- Environmental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | |
Collapse
|
9
|
Mitra A, Richards I, Kitchin K, Conolly R, Kulkarni AP. Mirex induces ornithine decarboxylase in female rat liver. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1990; 5:119-24. [PMID: 2283661 DOI: 10.1002/jbt.2570050207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, was significantly induced in female rat liver following oral administration of the pesticide mirex. After dual oral exposure (120 mg/kg of mirex; 21 and 4 hr prior to sacrifice), ornithine decarboxylase activity in rat liver cytosol was 70-fold higher than control values. A single oral dose of mirex (180 mg/kg) induced hepatic ornithine decarboxylase activity 55-fold over controls. After a single oral dose of mirex the maximal induction of ODC activity occurred at 36 hr. Mirex is an unusually potent and long-lasting inducer of rat hepatic ornithine decarboxylase activity.
Collapse
Affiliation(s)
- A Mitra
- Toxicology Program, College of Public Health, University of South Florida, Tampa 33612
| | | | | | | | | |
Collapse
|