Morichetti E, Ceragioli C, Cundari E, Del Carratore R, Fiorio R, Bronzetti G, Averbeck D. Metabolism of 5-methoxypsoralen by Saccharomyces cerevisiae.
Photochem Photobiol 1991;
54:689-95. [PMID:
1798745 DOI:
10.1111/j.1751-1097.1991.tb02076.x]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Incubation of methoxypsoralen (5-MOP) in the presence of diploid yeast cells (Saccharomyces cerevisiae) before UV-A exposure leads to an incubation-time dependent decrease of photoinduced genotoxic effects. The reduction in photoinduced genotoxicity is stronger in cells grown in the presence of 20% glucose and containing high levels of cytochrome P-450 than in cells grown in the presence of 0.5% glucose and containing undetectable levels of cytochrome P-450. Inhibition of P-450 activity by specific inhibitors, such as tetrahydrofuran and metyrapone, strongly affects the observed decrease in 5-MOP genotoxicity, indicating the involvement of P-450 in 5-MOP metabolism. As demonstrated by spectrophotometric and chromatographic (HPLC) analysis during incubation of 5-MOP with P-450 containing yeast cells, 5-MOP gradually disappears from the cell supernatant of the incubation mixture. The reduction in the chromatographic peak corresponding to 5-MOP is accompanied by the appearance of a new peak that probably corresponds to a metabolite. As shown by the use of P-450 specific inhibitors, the metabolite appears to be due to P-450 mediated 5-MOP metabolisation. Its UV absorption spectrum suggests an alteration of the pyrone moiety of the 5-MOP molecule.
Collapse