1
|
Gehl M, Demmer U, Ermler U, Shima S. Crystal structure of FAD-independent methylene-tetrahydrofolate reductase from Mycobacterium hassiacum. Proteins 2023; 91:1329-1340. [PMID: 37119125 DOI: 10.1002/prot.26504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
FAD-independent methylene-tetrahydrofolate (methylene-H4 F) reductase (Mfr), recently identified in mycobacteria, catalyzes the reduction of methylene-H4 F to methyl-H4 F with NADH as hydride donor by a ternary complex mechanism. This biochemical reaction corresponds to that of the ubiquitous FAD-dependent methylene-H4 F reductase (MTHFR), although the latter uses a ping-pong mechanism with the prosthetic group as intermediate hydride carrier. Comparative genomics and genetic analyses indicated that Mfr is indispensable for the growth of Mycobacterium tuberculosis, which lacks the MTHFR encoding gene. Therefore, Mfr appears to be an excellent target for the design of antimycobacterial drugs. Here, we report the heterologous production, enzymological characterization, and the crystal structure of Mfr from the thermophilic mycobacterium Mycobacterium hassiacum (hMfr), which shows 78% sequence identity to Mfr from M. tuberculosis. Although hMfr and MTHFR have minor sequence identity and different catalytic mechanisms, their structures are highly similar, thus suggesting a divergent evolution of Mfr and MTHFR from a common ancestor. Most of the important active site residues of MTHFR are conserved and equivalently positioned in the tertiary structure of hMfr. The Glu9Gln variant of hMfr exhibits a drastic reduction of the catalytic activity, which supports the predicted function of the glutamate residue as proton donor in both hMfr and MTHFR. Thus, highly similar binding modes for the C1 -carriers and the reducing agents in hMfr and MTHFR are assumed.
Collapse
Affiliation(s)
- Manuel Gehl
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Demmer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Coppo L, Scheggi S, DeMontis G, Priora R, Frosali S, Margaritis A, Summa D, Di Giuseppe D, Ulivelli M, Di Simplicio P. Does Risk of Hyperhomocysteinemia Depend on Thiol-Disulfide Exchange Reactions of Albumin and Homocysteine? Antioxid Redox Signal 2023; 38:920-958. [PMID: 36352822 DOI: 10.1089/ars.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 μM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simona Scheggi
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Graziella DeMontis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Raffaella Priora
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Simona Frosali
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Margaritis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Summa
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Danila Di Giuseppe
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Surgery, Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Paolo Di Simplicio
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: The folate-vitamin D-exposome triad. Mol Aspects Med 2021; 87:100944. [PMID: 33551238 DOI: 10.1016/j.mam.2021.100944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
Collapse
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
4
|
Adelekan OO, Uche EI, Balogun TM, Osunkalu VO, Akinbami AA, Ismail KA, Badiru MA, Dosunmu AO, Kamson OR. Methylene tetrahydrofolate reductase gene mutation in sickle cell anaemia patients in Lagos, Nigeria. Pan Afr Med J 2019; 34:213. [PMID: 32201547 PMCID: PMC7065652 DOI: 10.11604/pamj.2019.34.213.19524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction The significant causes of mortality among individuals with sickle cell anaemia (SCA) such as acute chest syndrome and cerebrovascular disease are related to vascular occlusion. Polymorphisms of the methylene tetrahydrofolate reductase (MTHFR) gene in persons with sickle cell anaemia have been suggested as a potential risk for vaso-occlusive events, with the C677T and A1298C polymorphisms being the commonest. This study therefore aimed to establish the pattern of MTHFR C677T and A1298C gene mutations among adults with HbSS phenotype attending the Haematology Clinic in Lagos State University Teaching Hospital Lagos, Nigeria. Methods A cross-sectional study was done among SCA patients attending the Haematology Clinic of the Lagos State University Teaching Hospital (LASUTH), using age and sex matched HbAA controls. DNA extraction and gene analysis were done. The selective amplification of a particular segment of the DNA by polymerase chain reaction (PCR) was done and subsequent digestion of the amplified MTHFR gene into its various fragments. Results The overall prevalence of the C677T mutation among participants was 19.3% (37 of 192), while the prevalence of A1298C was 15% (29 of 192). Conclusion The prevalence of MTHFR C677T was higher than A1298C mutations among sickle cell anaemia subjects.
Collapse
Affiliation(s)
| | - Ebele Ifeyinwa Uche
- Department of Haematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Taiwo Modupe Balogun
- Department of Haematology and Blood Transfusion, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Vincent Oluseye Osunkalu
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Idiaraba, Lagos, Nigeria
| | | | - Kamal Ayobami Ismail
- Department of Haematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Mulikat Adesola Badiru
- Department of Haematology and Blood Transfusion, General Hospital Marina, Lagos, Nigeria
| | - Adedoyin Owolabi Dosunmu
- Department of Haematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Omolara Risqat Kamson
- Department of Haematology and Blood Transfusion, Lagos State University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
5
|
Cajavilca CE, Gadhia RR, Román GC. MTHFR Gene Mutations Correlate with White Matter Disease Burden and Predict Cerebrovascular Disease and Dementia. Brain Sci 2019; 9:brainsci9090211. [PMID: 31443445 PMCID: PMC6770069 DOI: 10.3390/brainsci9090211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of dementia is on the rise and expected to continue to increase in the foreseeable future. Two of the most common subtypes of dementia are Alzheimer's subtype and vascular dementia. Hyperhomocysteinemia has been shown to serve as a risk factor for dementia due to an associated blood-brain barrier dysfunction and subsequent small-vessel disease pathology. There are varying causes for hyperhomocysteinemia, including genetic and dietary, among others. We highlight the importance of identifying hyperhomocysteinemia as a potential etiologic and therapeutic target for the most common subtypes of dementia.
Collapse
Affiliation(s)
- Christian E Cajavilca
- Vascular Neurology, Houston Methodist Hospital Neurological Institute, Houston, TX 77030, USA
| | - Rajan R Gadhia
- Vascular Neurology, Houston Methodist Hospital Neurological Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Department of Neurology, Cornell University, New York, NY 10065, USA.
| | - Gustavo C Román
- Alzheimer Clinic, Houston Methodist Hospital Neurological Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Department of Neurology, Cornell University, New York, NY 10065, USA
| |
Collapse
|
6
|
Folic acid and its congeners in the treatment of schizophrenia. Psychopharmacology (Berl) 2019; 236:1401-1402. [PMID: 30382355 DOI: 10.1007/s00213-018-5095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 11/27/2022]
|
7
|
Jiménez-Ramírez FJ, Castro LM, Ortiz C, Concepción J, Renta JY, Morales-Borges RH, Miranda-Massari JR, Duconge J. Role of treatment-modifying MTHFR677C>T and 1298A>C polymorphisms in metformin-treated Puerto Rican patients with type-2 diabetes mellitus and peripheral neuropathy. Drug Metab Pers Ther 2017; 32:23-32. [PMID: 28231061 DOI: 10.1515/dmpt-2016-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/20/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The study was conducted to investigate potential association between MTHFR genotypes and diabetic peripheral neuropathy (DPN) in Puerto Ricans with type-2 diabetes mellitus (T2DM) treated with metformin. The prevalence of major MTHFR polymorphisms in this cohort was also ascertained. METHODS DNAs from 89 metformin-treated patients with T2DM and DPN were genotyped using the PCR-based RFLP assay for MTHFR677C>T and 1298A>C polymorphisms. Frequency distributions of these variants in the study cohort were compared to those reported for three reference populations (HapMap project) and controls (400 newborn specimens). Chi-square (or Fischer's exact) tests and odds ratios (OR) were used to assess association with DPN susceptibility risk (patients vs. controls) and biochemical markers (wild types vs. carriers). RESULTS Sixty-seven percent (67%) of participants carry at least one of these MTHFR polymorphisms. No deviations from Hardy-Weinberg equilibrium were detected. The genotype and allele frequencies showed statistically significant differences between participants and controls (p<0.0001 and p=0.03, respectively). Results suggest that 1298A>C but not 677C>T is associated with DPN susceptibility in this cohort (p=0.018). Different patterns of allelic dissimilarities are observed when comparing our cohort vs. the three parental ancestries. After sorting individuals by their carrier status, no significant associations were observed between these genetic variants (independently or combined) and any of the biochemical markers (HbA1c, folate, vitamin B12, homocysteine). CONCLUSIONS Prevalence of major MTHFR variants in Puerto Rican patients with T2DM is first time ever reported. The study provides further evidence on the use of this genetic marker as an independent risk factor for DPN.
Collapse
|
8
|
Gao S, Li C, Chen L, Zhou X. Actions and mechanisms of reactive oxygen species and antioxidative system in semen. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Lucock M, Beckett E, Martin C, Jones P, Furst J, Yates Z, Jablonski NG, Chaplin G, Veysey M. UV‐associated decline in systemic folate: implications for human nutrigenetics, health, and evolutionary processes. Am J Hum Biol 2016; 29. [DOI: 10.1002/ajhb.22929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mark Lucock
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Emma Beckett
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Charlotte Martin
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Patrice Jones
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - John Furst
- School of Maths and Physical SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Zoe Yates
- School of Biomedical Sciences and PharmacyUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Nina G. Jablonski
- Anthropology DepartmentThe Pennsylvania State University409 Carpenter BuildingUniversity Park Pennsylvania16802
| | - George Chaplin
- Anthropology DepartmentThe Pennsylvania State University409 Carpenter BuildingUniversity Park Pennsylvania16802
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, NSW, 2308, Australia and, Central Coast Local Health DistrictTeaching and Research Unit, Gosford HospitalGosford NSW2250PO Box 361 Australia
| |
Collapse
|
10
|
Signaling pathway genes for blood pressure, folate and cholesterol levels among hypertensives: an epistasis analysis. J Hum Hypertens 2014; 29:99-104. [DOI: 10.1038/jhh.2014.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/10/2014] [Accepted: 05/27/2014] [Indexed: 11/08/2022]
|
11
|
Gasparini CF, Sutherland HG, Griffiths LR. Studies on the pathophysiology and genetic basis of migraine. Curr Genomics 2013; 14:300-15. [PMID: 24403849 PMCID: PMC3763681 DOI: 10.2174/13892029113149990007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023] Open
Abstract
Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people's daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.
Collapse
Affiliation(s)
| | | | - Lyn R Griffiths
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Building G05, GRIFFITH UNIVERSITY QLD 4222, Australia
| |
Collapse
|
12
|
Carrell DT. Research Highlights: Highlights from the latest articles in advances in the understanding of sperm epigenetics. Epigenomics 2013; 5:21-2. [DOI: 10.2217/epi.12.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Douglas T Carrell
- Andrology & IVF Laboratories & Departments of Surgery (Urology), Obstetrics & Gynecology, & Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| |
Collapse
|
13
|
Miranda-Massari JR, Gonzalez MJ, Jimenez FJ, Allende-Vigo MZ, Duconge J. Metabolic correction in the management of diabetic peripheral neuropathy: improving clinical results beyond symptom control. CURRENT CLINICAL PHARMACOLOGY 2011; 6:260-73. [PMID: 22082324 PMCID: PMC3682498 DOI: 10.2174/157488411798375967] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/07/2011] [Accepted: 09/23/2011] [Indexed: 12/28/2022]
Abstract
Current Clinical Management Guidelines of Diabetic Peripheral Neuropathy (DPN) are based on adequate glucose control and symptomatic pain relief. However, meticulous glycemic control could delay the onset or slow the progression of diabetic neuropathy in patients with DM type 2, but it does not completely prevent the progression of the disease. Complications of DPN as it continues its natural course, produce increasing pain and discomfort, loss of sensation, ulcers, infections, amputations and even death. In addition to the increased suffering, disability and loss of productivity, there is a very significant economic impact related to the treatment of DPN and its complications. In USA alone, it has been estimated that there are more than 5,000,000 patients suffering from DPN and the total annual cost of treating the disease and its complications is over $10,000 million dollars. In order to be able to reduce complications of DPN, it is crucial to improve or correct the metabolic conditions that lead to the pathology present in this condition. Pathophysiologic mechanisms implicated in diabetic neuropathy include: increased polyol pathway with accumulation of sorbitol and reduced Na+/K+-ATPase activity, microvascular damage and hypoxia due to nitric oxide deficit and increased oxygen free radical activity. Moreover, there is a decrease in glutathione and increase in homocysteine. Clinical trials in the last two decades have demonstrated that the use of specific nutrients can correct some of these metabolic derangements, improving symptom control and providing further benefits such as improved sensorium, blood flow and nerve regeneration. We will discuss the evidence on lipoic acid, acetyl-L-carnitine, benfotiamine and the combination of active B vitamins L-methylfolate, methylcobalamin and piridoxal-6-phosphate. In addition, we discuss the role of metformin, an important drug in the management of diabetes, and the presence of specific polymorphic genes, in the risk of developing DPN and how metabolic correction can reduce these risks.
Collapse
Affiliation(s)
- Jorge R. Miranda-Massari
- RECNAC 2 Project, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- School of Pharmacy, Department of Pharmacy Practice, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Michael J. Gonzalez
- RECNAC 2 Project, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Graduate School of Public Health, Department of Human Development, Nutrition Program, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Francisco J. Jimenez
- School of Pharmacy, Department of Pharmacy Practice, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Myriam Z. Allende-Vigo
- School of Medicine, Department of Endocrinology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Jorge Duconge
- RECNAC 2 Project, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Pharmaceutical Sciences, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
14
|
Safarinejad MR, Shafiei N, Safarinejad S. Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase (C677T, A1298C, and G1793A) as risk factors for idiopathic male infertility. Reprod Sci 2010; 18:304-15. [PMID: 20978181 DOI: 10.1177/1933719110385135] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The human methylenetetrahydrofolate reductase (MTHFR) gene plays a crucial role in folate metabolism. Data regarding the influence of MTHFR gene polymorphisms on male fertility status are scarce and conflicting. We determined associations between 3 MTHFR gene polymorphisms (C677T, A1298C, and G1793A), serum folate, and total homocysteine (tHcy) levels, with male fertility status and semen parameters. METHODS MTHFR genotypes were determined using polymerase chain reaction restriction fragment length polymorphism (PCR-RLFP) technique and serum tHcy, folate, and vitamin B12 concentrations were measured in 164 men with idiopathic infertility and 328 healthy participants. RESULTS There was a significant difference in genotype frequency distribution of MTHFR C677T polymorphism between infertile patients and controls (P = .004). The 677T allele carriers (TC or TT) had a significantly increased risk of infertility compared with the CC homozygotes (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.21-2.75, and OR = 2.68, 95% CI = 1.84-3.44, respectively), in a logistic regression model after adjustment for confounding factors. Men with the 677T, 1298C, and 1793G alleles showed significantly higher serum tHcy and lower folate levels (all Ps < .01). We found a positive correlation between serum folate concentrations and sperm density (r = .74, P = .001), percentage of sperm with progressive motility (r = .68, P = .001), as well as percentage of sperm with normal morphology (r = .72, P = .001). CONCLUSION MTHFR C677T polymorphism is associated with an increased risk of idiopathic male infertility. Further study on the biologic role that this polymorphism plays in the development of infertility may lead to better understanding of the etiology of impaired spermatogenesis.
Collapse
|
15
|
Lee MN, Takawira D, Nikolova AP, Ballou DP, Furtado VC, Phung NL, Still BR, Thorstad MK, Tanner JJ, Trimmer EE. Functional role for the conformationally mobile phenylalanine 223 in the reaction of methylenetetrahydrofolate reductase from Escherichia coli. Biochemistry 2009; 48:7673-85. [PMID: 19610625 DOI: 10.1021/bi9007325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The flavoprotein methylenetetrahydrofolate reductase from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) by NADH via a ping-pong reaction mechanism. Structures of the reduced enzyme in complex with NADH and of the oxidized Glu28Gln enzyme in complex with CH(3)-H(4)folate [Pejchal, R., Sargeant, R., and Ludwig, M. L. (2005) Biochemistry 44, 11447-11457] have revealed Phe223 as a conformationally mobile active site residue. In the NADH complex, the NADH adopts an unusual hairpin conformation and is wedged between the isoalloxazine ring of the FAD and the side chain of Phe223. In the folate complex, Phe223 swings out from its position in the NADH complex to stack against the p-aminobenzoate ring of the folate. Although Phe223 contacts each substrate in E. coli MTHFR, this residue is not invariant; for example, a leucine occurs at this site in the human enzyme. To examine the role of Phe223 in substrate binding and catalysis, we have constructed mutants Phe223Ala and Phe223Leu. As predicted, our results indicate that Phe223 participates in the binding of both substrates. The Phe223Ala mutation impairs NADH and CH(2)-H(4)folate binding each 40-fold yet slows catalysis of both half-reactions less than 2-fold. Affinity for CH(2)-H(4)folate is unaffected by the Phe223Leu mutation, and the variant catalyzes the oxidative half-reaction 3-fold faster than the wild-type enzyme. Structures of ligand-free Phe223Leu and Phe223Leu/Glu28Gln MTHFR in complex with CH(3)-H(4)folate have been determined at 1.65 and 1.70 A resolution, respectively. The structures show that the folate is bound in a catalytically competent conformation, and Leu223 undergoes a conformational change similar to that observed for Phe223 in the Glu28Gln-CH(3)-H(4)folate structure. Taken together, our results suggest that Leu may be a suitable replacement for Phe223 in the oxidative half-reaction of E. coli MTHFR.
Collapse
Affiliation(s)
- Moon N Lee
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Minisini R, Fabris C, Toniutto P, Pirisi M. Combinatorial use of single nucleotide polymorphisms to help predict liver fibrosis in patients with hepatitis C infections. ACTA ACUST UNITED AC 2009; 3:355-70. [DOI: 10.1517/17530050902893311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Abstract
Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies own natural antioxidant defenses, resulting in cellular damage. Oxidative stress is a common pathology seen in approximately half of all infertile men. ROS, defined as including oxygen ions, free radicals and peroxides are generated by sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm DNA, resulting in the passage of defective paternal DNA on to the conceptus. This review will provide an overview of oxidative biochemistry related to sperm health and will identify which men are most at risk of oxidative infertility. Finally, the review will outline methods available for diagnosing oxidative stress and the various treatments available.
Collapse
Affiliation(s)
- Kelton Tremellen
- Repromed, 180 Fullarton Road, Dulwich, 5065 Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res 2008; 98:47-54. [PMID: 17976958 PMCID: PMC2271139 DOI: 10.1016/j.schres.2007.09.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/18/2007] [Accepted: 09/24/2007] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The metabolic syndrome and insulin resistance represent growing concerns related to atypical antipsychotic (AAP) use as their incidence in the schizophrenia population is two-to-four-fold higher than the general population. Reduced methylenetetrahydrofolate reductase (MTHFR) activity, resulting in aberrant folate metabolism and hyperhomocysteinemia, has been linked to cardiovascular disease and is unstudied in relation to AAP associated metabolic complications. PURPOSE To examine the relationship between MTHFR, metabolic syndrome, and insulin resistance in schizophrenia subjects receiving AAPs for >or=12 months. METHODS Fifty-eight subjects were included in this cross-sectional analysis and screened for the metabolic syndrome, insulin resistance and MTHFR 677C/T and 1298A/C genotype. RESULTS Overall, 23 subjects (40%) met metabolic syndrome criteria. There were no differences in age, gender, race, or AAP exposure between genotype groups. For the 677 T allele carriers, 53% met metabolic syndrome criteria, compared to 23% in the CC genotype group, giving an OR=3.7, (95% CI=1.24-12.66, p=0.02). Thus, for T allele subjects, the risk was almost four times greater, despite similar antipsychotic exposure. Both waist circumference and MTHFR genotype significantly predicted insulin resistance (F=8.35, df=5, 51, p<0.0001), with these two terms interacting (F=8.6, df=2, p=0.0006) suggesting that TT subjects are at greater risk for insulin resistance with increasing central adiposity, which is independent of age, gender, BMI, or metabolic syndrome diagnosis. CONCLUSION Results should be taken cautiously due to the small sample size, but suggest the MTHFR 677C/T variant may predispose patients to AAP metabolic complications.
Collapse
|
19
|
Abstract
Alcoholic liver disease is associated with abnormal hepatic methionine metabolism, including increased levels of homocysteine and S-adenosylhomocysteine (SAH) and reduced levels of S-adenosylmethionine (SAM) and glutathione (GSH). The concept that abnormal methionine metabolism is involved in the pathogenesis of alcoholic liver disease was strengthened by our previous findings in a micropig model where combining dietary folate deficiency with chronic ethanol feeding produced maximal changes in these metabolites together with early onset of microscopic steatohepatitis and an eightfold increase in plasma aspartate aminotransferase. The goal of the present study was to determine potential mechanisms for abnormal levels of these methionine metabolites by analyzing the transcripts and activities of transmethylation enzymes in the livers of the same micropigs. Ethanol feeding or folate deficiency, separately or in combination, decreased transcript levels of methylenetetrahydrofolate reductase (MTHFR), methionine adenosyltransferase (MAT1A), glycine-N-methyltransferase (GNMT) and S-adenosylhomocysteine hydrolase (SAHH). Ethanol feeding alone reduced the activities of methionine synthase (MS) and MATIII and increased the activity of GNMT. Each diet, separately or in combination, decreased the activities of MTHFR and SAHH. In conclusion, the observed abnormal levels of methionine metabolites in this animal model of accelerated alcoholic liver injury can be ascribed to specific effects of ethanol with or without folate deficiency on the expressions and activities of hepatic enzymes that regulate transmethylation reactions. These novel effects on transmethylation reactions may be implicated in the pathogenesis of alcoholic liver disease.
Collapse
Affiliation(s)
- Jesus A Villanueva
- Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
20
|
Andrich J, Saft C, Arz A, Schneider B, Agelink MW, Kraus PH, Kuhn W, Müller T. Hyperhomocysteinaemia in treated patients with Huntington's disease homocysteine in HD. Mov Disord 2004; 19:226-8. [PMID: 14978683 DOI: 10.1002/mds.10629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Significantly increased plasma total homocysteine levels (t-Hcys) appeared in treated Huntington disease (HD) patients compared to controls and untreated HD subjects. Because the protein Huntingtin interacts with the homocysteine metabolism modulating enzyme cystathionine beta-synthase, we hypothesize that homocysteine promotes neurodegeneration in HD.
Collapse
Affiliation(s)
- Jürgen Andrich
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|