1
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Romero-Rivera A, Corbella M, Parracino A, Patrick WM, Kamerlin SCL. Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) 8 Barrel Enzymes of Histidine and Tryptophan Biosynthesis. JACS AU 2022; 2:943-960. [PMID: 35557756 PMCID: PMC9088769 DOI: 10.1021/jacsau.2c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
Enzymes are conformationally dynamic, and their dynamical properties play an important role in regulating their specificity and evolvability. In this context, substantial attention has been paid to the role of ligand-gated conformational changes in enzyme catalysis; however, such studies have focused on tremendously proficient enzymes such as triosephosphate isomerase and orotidine 5'-monophosphate decarboxylase, where the rapid (μs timescale) motion of a single loop dominates the transition between catalytically inactive and active conformations. In contrast, the (βα)8-barrels of tryptophan and histidine biosynthesis, such as the specialist isomerase enzymes HisA and TrpF, and the bifunctional isomerase PriA, are decorated by multiple long loops that undergo conformational transitions on the ms (or slower) timescale. Studying the interdependent motions of multiple slow loops, and their role in catalysis, poses a significant computational challenge. This work combines conventional and enhanced molecular dynamics simulations with empirical valence bond simulations to provide rich details of the conformational behavior of the catalytic loops in HisA, PriA, and TrpF, and the role of their plasticity in facilitating bifunctionality in PriA and evolved HisA variants. In addition, we demonstrate that, similar to other enzymes activated by ligand-gated conformational changes, loops 3 and 4 of HisA and PriA act as gripper loops, facilitating the isomerization of the large bulky substrate ProFAR, albeit now on much slower timescales. This hints at convergent evolution on these different (βα)8-barrel scaffolds. Finally, our work reemphasizes the potential of engineering loop dynamics as a tool to artificially manipulate the catalytic repertoire of TIM-barrel proteins.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, 6012 Wellington, New Zealand
| | | |
Collapse
|
3
|
Jian Y, Han Y, Fu Z, Xia M, Jiang G, Lu D, Wu J, Liu Z. The role of conformational dynamics on the activity of polymer-conjugated CalB in organic solvents. Phys Chem Chem Phys 2022; 24:22028-22037. [DOI: 10.1039/d2cp02208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perennial interest in enzyme catalysis has been expanding its applicability from aqueous phase where enzymes are naturally evolved to organic solvents in which the majority of industrial chemical synthesis...
Collapse
|
4
|
Uversky VN, Giuliani A. Networks of Networks: An Essay on Multi-Level Biological Organization. Front Genet 2021; 12:706260. [PMID: 34234818 PMCID: PMC8255927 DOI: 10.3389/fgene.2021.706260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
The multi-level organization of nature is self-evident: proteins do interact among them to give rise to an organized metabolism, while in the same time each protein (a single node of such interaction network) is itself a network of interacting amino-acid residues allowing coordinated motion of the macromolecule and systemic effect as allosteric behavior. Similar pictures can be drawn for structure and function of cells, organs, tissues, and ecological systems. The majority of biologists are used to think that causally relevant events originate from the lower level (the molecular one) in the form of perturbations, that “climb up” the hierarchy reaching the ultimate layer of macroscopic behavior (e.g., causing a specific disease). Such causative model, stemming from the usual genotype-phenotype distinction, is not the only one. As a matter of fact, one can observe top-down, bottom-up, as well as middle-out perturbation/control trajectories. The recent complex network studies allow to go further the pure qualitative observation of the existence of both non-linear and non-bottom-up processes and to uncover the deep nature of multi-level organization. Here, taking as paradigm protein structural and interaction networks, we review some of the most relevant results dealing with between networks communication shedding light on the basic principles of complex system control and dynamics and offering a more realistic frame of causation in biology.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Hurley MFD, Northrup JD, Ge Y, Schafmeister CE, Voelz VA. Metal Cation-Binding Mechanisms of Q-Proline Peptoid Macrocycles in Solution. J Chem Inf Model 2021; 61:2818-2828. [PMID: 34125519 DOI: 10.1021/acs.jcim.1c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rational design of foldable and functionalizable peptidomimetic scaffolds requires the concerted application of both computational and experimental methods. Recently, a new class of designed peptoid macrocycle incorporating spiroligomer proline mimics (Q-prolines) has been found to preorganize when bound by monovalent metal cations. To determine the solution-state structure of these cation-bound macrocycles, we employ a Bayesian inference method (BICePs) to reconcile enhanced-sampling molecular simulations with sparse ROESY correlations from experimental NMR studies to predict and design conformational and binding properties of macrocycles as functional scaffolds for peptidomimetics. Conformations predicted to be most populated in solution were then simulated in the presence of explicit cations to yield trajectories with observed binding events, revealing a highly preorganized all-trans amide conformation, whose formation is likely limited by the slow rate of cis/trans isomerization. Interestingly, this conformation differs from a racemic crystal structure solved in the absence of cation. Free energies of cation binding computed from distance-dependent potentials of mean force suggest Na+ has a higher affinity to the macrocycle than K+, with both cations binding much more strongly in acetonitrile than water. The simulated affinities are able to correctly rank the extent to which different macrocycle sequences exhibit preorganization in the presence of different metal cations and solvents, suggesting our approach is suitable for solution-state computational design.
Collapse
Affiliation(s)
- Matthew F D Hurley
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Justin D Northrup
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yunhui Ge
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | | | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Hu QH, Williams MT, Shulgina I, Fossum CJ, Weeks KM, Adams LM, Reinhardt CR, Musier-Forsyth K, Hati S, Bhattacharyya S. Editing Domain Motions Preorganize the Synthetic Active Site of Prolyl-tRNA Synthetase. ACS Catal 2020; 10:10229-10242. [PMID: 34295570 DOI: 10.1021/acscatal.0c02381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolyl-tRNA synthetases (ProRSs) catalyze the covalent attachment of proline onto cognate tRNAs, an indispensable step for protein synthesis in all living organisms. ProRSs are modular enzymes and the "prokaryotic-like" ProRSs are distinguished from "eukaryotic-like" ProRSs by the presence of an editing domain (INS) inserted between motifs 2 and 3 of the main catalytic domain. Earlier studies suggested the presence of coupled-domain dynamics could contribute to catalysis; however, the role that the distal, highly mobile INS domain plays in catalysis at the synthetic active site is not completely understood. In the present study, a combination of theoretical and experimental approaches has been used to elucidate the precise role of INS domain dynamics. Quantum mechanical/molecular mechanical simulations were carried out to model catalytic Pro-AMP formation by Enterococcus faecalis ProRS. The energetics of the adenylate formation by the wild-type enzyme was computed and contrasted with variants containing active site mutations, as well as a deletion mutant lacking the INS domain. The combined results revealed that two distinct types of dynamics contribute to the enzyme's catalytic power. One set of motions is intrinsic to the INS domain and leads to conformational preorganization that is essential for catalysis. A second type of motion, stemming from the electrostatic reorganization of active site residues, impacts the height and width of the energy profile and has a critical role in fine tuning the substrate orientation to facilitate reactive collisions. Thus, motions in a distal domain can preorganize the active site of an enzyme to optimize catalysis.
Collapse
Affiliation(s)
- Quin H. Hu
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Murphi T. Williams
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carl J. Fossum
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Katelyn M. Weeks
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Lauren M. Adams
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Clorice R. Reinhardt
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| |
Collapse
|
7
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Crean RM, Gardner JM, Kamerlin SCL. Harnessing Conformational Plasticity to Generate Designer Enzymes. J Am Chem Soc 2020; 142:11324-11342. [PMID: 32496764 PMCID: PMC7467679 DOI: 10.1021/jacs.0c04924] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Jasmine M. Gardner
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
9
|
Duff MR, Desai N, Craig MA, Agarwal PK, Howell EE. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions. Biochemistry 2019; 58:1198-1213. [PMID: 30724552 DOI: 10.1021/acs.biochem.8b01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) reduces dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. Due to its role in one carbon metabolism, chromosomal DHFR is the target of the antibacterial drug, trimethoprim. Resistance to trimethoprim has resulted in a type II DHFR that is not structurally related to the chromosomal enzyme target. Because of its metabolic significance, understanding DHFR kinetics and ligand binding behavior in more cell-like conditions, where the total macromolecule concentration can be as great as 300 mg/mL, is important. The progress-curve kinetics and ligand binding properties of the drug target (chromosomal E. coli DHFR) and the drug resistant (R67 DHFR) enzymes were studied in the presence of macromolecular cosolutes. There were varied effects on NADPH oxidation and binding to the two DHFRs, with some cosolutes increasing affinity and others weakening binding. However, DHF binding and reduction in both DHFRs decreased in the presence of all cosolutes. The decreased binding of ligands is mostly attributed to weak associations with the macromolecules, as opposed to crowder effects on the DHFRs. Computer simulations found weak, transient interactions for both ligands with several proteins. The net charge of protein cosolutes correlated with effects on NADP+ binding, with near neutral and positively charged proteins having more detrimental effects on binding. For DHF binding, effects correlated more with the size of binding pockets on the protein crowders. These nonspecific interactions between DHFR ligands and proteins predict that the in vivo efficiency of DHFRs may be much lower than expected from their in vitro rates.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Nidhi Desai
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Michael A Craig
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
10
|
Uversky VN. Protein intrinsic disorder and structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:1-17. [DOI: 10.1016/bs.pmbts.2019.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Abbat S, Jaladanki CK, Bharatam PV. Exploring PfDHFR reaction surface: A combined molecular dynamics and QM/MM analysis. J Mol Graph Model 2018; 87:76-88. [PMID: 30508692 DOI: 10.1016/j.jmgm.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/18/2022]
Abstract
The substrate to the enzyme PfDHFR (Plasmodium falciparum Dihydrofolate Reductase) is a small molecule dihydrofolate (DHF), it gets converted to tetrahydrofolate (THF) in the active site of the enzyme. The PfDHFR reaction surface involves the protonation of DHF to DHFP as an initial step before the catalytic conversion. The binding affinities of all these species (DHF, DHFP and THF) contribute to the mechanism of DHFR catalytic action. Molecular dynamics (MD) simulations and Quantum Mechanics/Molecular Mechanics (QM/MM) analysis were performed to evaluate the binding affinity and molecular recognition interactions of the substrate DHF/DHFP and the product THF, in the active site of wild-type PfDHFR (wtPfDHFR). The binding affinities of the cofactor NADPH/NADP+ were also estimated in all the three complexes. The molecular dynamics (MD) simulations of the substrate, product and cofactor in the cavities of wtPfDHFR revealed the variation of the atomic level interactions during the course of the catalytic conversion. It was found that the DHFP binds very strongly to the PfDHFR active site and pulls the cofactor NADPH closer to itself. The QM/MM analysis revealed that the binding energy of DHFP (-59.82 kcal/mol) and NADPH (-100.24 kcal/mol) in DHFP-wtPfDHFR complex, is higher in comparison to the binding energy of DHF (-38.67 kcal/mol) and NADPH (-77.53 kcal/mol) in DHF-wtPfDHFR complex and the binding energy of THF (-30.72 kcal/mol) and NADP+ (-73.72 kcal/mol) in THF-wtPfDHFR complex. The hydride ion donor-acceptor distance (DAD) analysis was also carried out. This combined MD and QM/MM analysis revealed that the protonation of DHF increases the proximity between the substrate and the cofactor, thus facilitates the reaction profile of PfDHFR.
Collapse
Affiliation(s)
- Sheenu Abbat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
12
|
Uversky VN. Flexibility of the "rigid" classics or rugged bottom of the folding funnels of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1. INTRINSICALLY DISORDERED PROTEINS 2018; 5:e1355205. [PMID: 30250772 DOI: 10.1080/21690707.2017.1355205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 10/18/2022]
Abstract
The abilities to crystalize of a globular protein and to solve its crystal structure seem to represent triumph of the lock-and-key model of protein functionality, where the presence of unique 3D structure resembling aperiodic crystal is considered as a prerequisite for a given protein to possess specific biologic activity. The history of protein crystallography has its roots in first crystal structures of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1 solved more than 50 y ago. This article briefly considers extensive structural information currently available for these proteins and shows that the bottoms of their folding funnels (i.e., the lowest parts of their potential energy landscapes) are not smoothed but rugged. In other words, these crystallization classics are characterized by significant conformational flexibility and are not rigid (immobile) crystal-like entities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
13
|
Riel AMS, Decato DA, Sun J, Massena CJ, Jessop MJ, Berryman OB. The intramolecular hydrogen bonded-halogen bond: a new strategy for preorganization and enhanced binding. Chem Sci 2018; 9:5828-5836. [PMID: 30079195 PMCID: PMC6050591 DOI: 10.1039/c8sc01973h] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023] Open
Abstract
Natural and synthetic molecules use weak noncovalent forces to preorganize structure and enable remarkable function. Herein, we introduce the intramolecular hydrogen bonded-halogen bond (HB-XB) as a novel method to preorganize halogen bonding (XBing) molecules, while generating a polarization-enhanced XB. Positioning a fluoroaniline between two iodopyridinium XB donors engendered intramolecular hydrogen bonding (HBing) to the electron-rich belt of both XB donors. NMR solution studies established the efficacy of the HB-XB. The receptor with HB-XBs (G2XB) displayed a nearly 9-fold increase in halide binding over control receptors. Gas-phase density functional theory conformational analysis indicated that the amine stabilizes the bidentate conformation. Furthermore, gas-phase interaction energies showed that the bidentate HB-XBs of G2XBme2+ are more than 3.2 kcal mol-1 stronger than the XBs in a control without the intramolecular HB. Additionally, crystal structures confirm that HB-XBs form tighter contacts with I- and Br- and produce receptors that are more planar. Collectively the results establish the intramolecular HB-XB as a tractable strategy to preorganize XB molecules and regulate XB strength.
Collapse
Affiliation(s)
| | - Daniel A Decato
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Jiyu Sun
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Casey J Massena
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | - Morly J Jessop
- University of Montana , 32 Campus Drive , Missoula , MT , USA .
| | | |
Collapse
|
14
|
Maurer D, Enugala TR, Hamnevik E, Bauer P, Lüking M, Petrović D, Hillier H, Kamerlin SCL, Dobritzsch D, Widersten M. Stereo- and Regioselectivity in Catalyzed Transformation of a 1,2-Disubstituted Vicinal Diol and the Corresponding Diketone by Wild Type and Laboratory Evolved Alcohol Dehydrogenases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dirk Maurer
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Emil Hamnevik
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Paul Bauer
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
- Biophysics, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Malin Lüking
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Dušan Petrović
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Heidi Hillier
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA. High-resolution studies of hydride transfer in the ferredoxin:NADP + reductase superfamily. FEBS J 2017; 284:3302-3319. [PMID: 28783258 DOI: 10.1111/febs.14190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/19/2023]
Abstract
Ferredoxin: NADP+ reductase (FNR) is an FAD-containing enzyme best known for catalysing the transfer of electrons from ferredoxin (Fd) to NADP+ to make NADPH during photosynthesis. It is also the prototype for a broad enzyme superfamily, including the NADPH oxidases (NOXs) that all catalyse similar FAD-enabled electron transfers between NAD(P)H and one-electron carriers. Here, we define further mechanistic details of the NAD(P)H ⇌ FAD hydride-transfer step of the reaction based on spectroscopic studies and high-resolution (~ 1.5 Å) crystallographic views of the nicotinamide-flavin interaction in crystals of corn root FNR Tyr316Ser and Tyr316Ala variants soaked with either nicotinamide, NADP+ , or NADPH. The spectra obtained from FNR crystal complexes match those seen in solution and the complexes reveal active site packing interactions and patterns of covalent distortion of the FAD that imply significant active site compression that would favour catalysis. Furthermore, anisotropic B-factors show that the mobility of the C4 atom of the nicotinamide in the FNR:NADP+ complex has a directionality matching that expected for boat-like excursions of the nicotinamide ring thought to enhance hydride transfer. Arguments are made for the relevance of this binding mode to catalysis, and specific consideration is given to how the results extrapolate to provide insight to structure-function relations for the membrane-bound NOX enzymes for which little structural information has been available. DATABASES Structural data are available in the PDB database under the accession numbers 3LO8 (wild-type), 5VW4 [Y316S:nicotinamide (P32 21)], 5VW9 [Y316S:nicotinamide (P31 21)], 5VW3 [Y316S:NADP+ (P32 21)], 5VW8 [Y316S:NADP+ (P31 21)], 5VW2 [Y316S:NADPH (P32 21)], 5VW5 [Y316A:nicotinamide (P32 21)], 5VW6 [Y316A:NADP+ (P32 21)], 5VW7 [Y316A:NADPH (P32 21)], 5VWA [Y316F (P32 21)], and 5VWB [Y316F:NADP+ (P31 21)]. Enzyme Commission number: ferredoxin:NADP+ reductase - E C1.18.1.2.
Collapse
Affiliation(s)
- Kelsey M Kean
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Russell A Carpenter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Vittorio Pandini
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Giuliana Zanetti
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Andrea R Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Rick Faber
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | | | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
16
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Int J Mol Sci 2016; 17:ijms17111874. [PMID: 27834926 PMCID: PMC5133874 DOI: 10.3390/ijms17111874] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Although it is one of the most studied proteins, p53 continues to be an enigma. This protein has numerous biological functions, possesses intrinsically disordered regions crucial for its functionality, can form both homo-tetramers and isoform-based hetero-tetramers, and is able to interact with many binding partners. It contains numerous posttranslational modifications, has several isoforms generated by alternative splicing, alternative promoter usage or alternative initiation of translation, and is commonly mutated in different cancers. Therefore, p53 serves as an important illustration of the protein structure–function continuum concept, where the generation of multiple proteoforms by various mechanisms defines the ability of this protein to have a multitude of structurally and functionally different states. Considering p53 in the light of a proteoform-based structure–function continuum represents a non-canonical and conceptually new contemplation of structure, regulation, and functionality of this important protein.
Collapse
|
18
|
Reddish MJ, Vaughn MB, Fu R, Dyer RB. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase. Biochemistry 2016; 55:1485-93. [PMID: 26901612 DOI: 10.1021/acs.biochem.5b01364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein-ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Morgan B Vaughn
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Rong Fu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Wang Z, Sapienza PJ, Abeysinghe T, Luzum C, Lee AL, Finer-Moore JS, Stroud RM, Kohen A. Mg2+ binds to the surface of thymidylate synthase and affects hydride transfer at the interior active site. J Am Chem Soc 2013; 135:7583-92. [PMID: 23611499 PMCID: PMC3674108 DOI: 10.1021/ja400761x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e., the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg(2+) has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg(2+) binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg(2+) near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg(2+) binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg(2+) to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg(2+) accelerates the hydride transfer by ~7-fold but does not affect the magnitude or temperature dependence of the intrinsic kinetic isotope effect. These results suggest that Mg(2+) facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg(2+) concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg(2+) with the glutamyl tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with polyglutamyl substitutes as species-specific antibiotic drugs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Calvin Luzum
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Janet S. Finer-Moore
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Abstract
Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.
Collapse
|
21
|
Unusual biophysics of intrinsically disordered proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:932-51. [PMID: 23269364 DOI: 10.1016/j.bbapap.2012.12.008] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Research of a past decade and a half leaves no doubt that complete understanding of protein functionality requires close consideration of the fact that many functional proteins do not have well-folded structures. These intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered protein regions (IDPRs) are highly abundant in nature and play a number of crucial roles in a living cell. Their functions, which are typically associated with a wide range of intermolecular interactions where IDPs possess remarkable binding promiscuity, complement functional repertoire of ordered proteins. All this requires a close attention to the peculiarities of biophysics of these proteins. In this review, some key biophysical features of IDPs are covered. In addition to the peculiar sequence characteristics of IDPs these biophysical features include sequential, structural, and spatiotemporal heterogeneity of IDPs; their rough and relatively flat energy landscapes; their ability to undergo both induced folding and induced unfolding; the ability to interact specifically with structurally unrelated partners; the ability to gain different structures at binding to different partners; and the ability to keep essential amount of disorder even in the bound form. IDPs are also characterized by the "turned-out" response to the changes in their environment, where they gain some structure under conditions resulting in denaturation or even unfolding of ordered proteins. It is proposed that the heterogeneous spatiotemporal structure of IDPs/IDPRs can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and unfoldons. They may lose their function when folded, and activation of some IDPs is associated with the awaking of the dormant disorder. It is possible that IDPs represent the "edge of chaos" systems which operate in a region between order and complete randomness or chaos, where the complexity is maximal. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
22
|
Wang Z, Abeysinghe T, Finer-Moore JS, Stroud RM, Kohen A. A remote mutation affects the hydride transfer by disrupting concerted protein motions in thymidylate synthase. J Am Chem Soc 2012; 134:17722-30. [PMID: 23034004 DOI: 10.1021/ja307859m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of protein flexibility in enzyme-catalyzed activation of chemical bonds is an evolving perspective in enzymology. Here we examine the role of protein motions in the hydride transfer reaction catalyzed by thymidylate synthase (TSase). Being remote from the chemical reaction site, the Y209W mutation of Escherichia coli TSase significantly reduces the protein activity, despite the remarkable similarity between the crystal structures of the wild-type and mutant enzymes with ligands representing their Michaelis complexes. The most conspicuous difference between these two crystal structures is in the anisotropic B-factors, which indicate disruption of the correlated atomic vibrations of protein residues in the mutant. This dynamically altered mutant allows a variety of small thiols to compete for the reaction intermediate that precedes the hydride transfer, indicating disruption of motions that preorganize the protein environment for this chemical step. Although the mutation causes higher enthalpy of activation of the hydride transfer, it only shows a small effect on the temperature dependence of the intrinsic KIE, suggesting marginal changes in the geometry and dynamics of the H-donor and -acceptor at the tunneling ready state. These observations suggest that the mutation disrupts the concerted motions that bring the H-donor and -acceptor together during the pre- and re-organization of the protein environment. The integrated structural and kinetic data allow us to probe the impact of protein motions on different time scales of the hydride transfer reaction within a complex enzymatic mechanism.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727, USA
| | | | | | | | | |
Collapse
|
23
|
Hot spots for allosteric regulation on protein surfaces. Cell 2012; 147:1564-75. [PMID: 22196731 DOI: 10.1016/j.cell.2011.10.049] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/10/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
Abstract
Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved "wiring" mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.
Collapse
|
24
|
Kinetic and thermodynamic study of cloned thermostable endo-1,4-β-xylanase from Thermotoga petrophila in mesophilic host. Mol Biol Rep 2012; 39:7251-61. [PMID: 22322560 DOI: 10.1007/s11033-012-1555-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(½)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.
Collapse
|
25
|
Grubbs J, Rahmanian S, DeLuca A, Padmashali C, Jackson M, Duff MR, Howell EE. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase. Biochemistry 2011; 50:3673-85. [PMID: 21462996 DOI: 10.1021/bi2002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ∼5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.
Collapse
Affiliation(s)
- Jordan Grubbs
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Chakravorty DK, Hammes-Schiffer S. Impact of mutation on proton transfer reactions in ketosteroid isomerase: insights from molecular dynamics simulations. J Am Chem Soc 2010; 132:7549-55. [PMID: 20450180 PMCID: PMC2896286 DOI: 10.1021/ja102714u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two proton transfer reactions catalyzed by ketosteroid isomerase (KSI) involve a dienolate intermediate stabilized by hydrogen bonds with Tyr14 and Asp99. Molecular dynamics simulations based on an empirical valence bond model are used to examine the impact of mutating these residues on the hydrogen-bonding patterns, conformational changes, and van der Waals and electrostatic interactions during the proton transfer reactions. While the rate constants for the two proton transfer steps are similar for wild-type (WT) KSI, the simulations suggest that the rate constant for the first proton transfer step is smaller in the mutants due to the significantly higher free energy of the dienolate intermediate relative to the reactant. The calculated rate constants for the mutants D99L, Y14F, and Y14F/D99L relative to WT KSI are qualitatively consistent with the kinetic experiments indicating a significant reduction in the catalytic rates along the series of mutants. In the simulations, WT KSI retained two hydrogen-bonding interactions between the substrate and the active site, while the mutants typically retained only one hydrogen-bonding interaction. A new hydrogen-bonding interaction between the substrate and Tyr55 was observed in the double mutant, leading to the prediction that mutation of Tyr55 will have a greater impact on the proton transfer rate constants for the double mutant than for WT KSI. The electrostatic stabilization of the dienolate intermediate relative to the reactant was greater for WT KSI than for the mutants, providing a qualitative explanation for the significantly reduced rates of the mutants. The active site exhibited restricted motion during the proton transfer reactions, but small conformational changes occurred to facilitate the proton transfer reactions by strengthening the hydrogen-bonding interactions and by bringing the proton donor and acceptor closer to each other with the proper orientation for proton transfer. Thus, these calculations suggest that KSI forms a preorganized active site but that the structure of this preorganized active site is altered upon mutation. Moreover, small conformational changes due to stochastic thermal motions are required within this preorganized active site to facilitate the proton transfer reactions.
Collapse
Affiliation(s)
- Dhruva K. Chakravorty
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, PA 16802
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
27
|
Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins 2010; 78:1339-75. [PMID: 20099310 PMCID: PMC2841229 DOI: 10.1002/prot.22654] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enzymes play a key role in almost all biological processes, accelerating a variety of metabolic reactions as well as controlling energy transduction, the transcription, and translation of genetic information, and signaling. They possess the remarkable capacity to accelerate reactions by many orders of magnitude compared to their uncatalyzed counterparts, making feasible crucial processes that would otherwise not occur on biologically relevant timescales. Thus, there is broad interest in understanding the catalytic power of enzymes on a molecular level. Several proposals have been put forward to try to explain this phenomenon, and one that has rapidly gained momentum in recent years is the idea that enzyme dynamics somehow contributes to catalysis. This review examines the dynamical proposal in a critical way, considering basically all reasonable definitions, including (but not limited to) such proposed effects as "coupling between conformational and chemical motions," "landscape searches" and "entropy funnels." It is shown that none of these proposed effects have been experimentally demonstrated to contribute to catalysis, nor are they supported by consistent theoretical studies. On the other hand, it is clarified that careful simulation studies have excluded most (if not all) dynamical proposals. This review places significant emphasis on clarifying the role of logical definitions of different catalytic proposals, and on the need for a clear formulation in terms of the assumed potential surface and reaction coordinate. Finally, it is pointed out that electrostatic preorganization actually accounts for the observed catalytic effects of enzymes, through the corresponding changes in the activation free energies.
Collapse
Affiliation(s)
- Shina C. L. Kamerlin
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| |
Collapse
|
28
|
Trivella DBB, Bleicher L, Palmieri LDC, Wiggers HJ, Montanari CA, Kelly JW, Lima LMTR, Foguel D, Polikarpov I. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: implications to tetramer stability and ligand-binding. J Struct Biol 2010; 170:522-31. [PMID: 20211733 DOI: 10.1016/j.jsb.2010.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 11/26/2022]
Abstract
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis.
Collapse
Affiliation(s)
- Daniela B B Trivella
- Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Horiuchi Y, Ohmae E, Tate SI, Gekko K. Coupling effects of distal loops on structural stability and enzymatic activity of Escherichia coli dihydrofolate reductase revealed by deletion mutants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:846-55. [PMID: 20045086 DOI: 10.1016/j.bbapap.2009.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/08/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Residues distal from the active site in dihydrofolate reductase (DHFR) have regulatory roles in catalytic reaction and also folding stability. The couplings of the distal residues to the ones in the active site have been analyzed using site-directed mutants. To expand our understanding of the structural and functional influences of distal residue mutation, we explored the structural stability and enzymatic activity of deletion mutants. Deletion has greater structural and dynamical impacts on the corresponding part than site-directed mutation does. Thus, deletion amplifies the effects caused by distal mutations, which should make the mutual couplings among the distant residues more apparent. We focused on residues 52, 67, 121, and 145 in the four distinct loops of DHFR. All the single-residue deletion mutants showed marked reduction in stability, except for Delta52 in an alphaC-betaC loop. Double deletion mutants showed that the loop alphaC-betaC has nonadditive couplings with the betaF-betaG and betaG-betaH loops regarding stability. Single deletion to the loops alphaC-betaC or betaC-betaD resulted in considerable activity reduction, demonstrating that the loops couple to the residues near the active site. The four loops were shown to be functionally interdependent from the double deletion experiments.
Collapse
Affiliation(s)
- Yuji Horiuchi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | |
Collapse
|
30
|
Luo J, Bruice TC. Envisioning the Loop Movements and Rotation of the Two Subdomains of Dihydrofolate Reductase by Elastic Normal Mode Analysis. J Biomol Struct Dyn 2009; 27:245-58. [DOI: 10.1080/07391102.2009.10507313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Swiegers G, Huang J, Brimblecombe R, Chen J, Dismukes GC, Mueller-Westerhoff U, Spiccia L, Wallace G. Homogeneous Catalysts with a Mechanical (“Machine-like”) Action. Chemistry 2009; 15:4746-59. [DOI: 10.1002/chem.200802396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R. Surface sites for engineering allosteric control in proteins. Science 2008; 322:438-42. [PMID: 18927392 PMCID: PMC3071530 DOI: 10.1126/science.1159052] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Madhusudan Natarajan
- Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal C. Nashine
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Socolich
- Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tina Vo
- Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William P. Russ
- Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen J. Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Rama Ranganathan
- Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Berkholz DS, Faber HR, Savvides SN, Karplus PA. Catalytic cycle of human glutathione reductase near 1 A resolution. J Mol Biol 2008; 382:371-84. [PMID: 18638483 DOI: 10.1016/j.jmb.2008.06.083] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/08/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 A that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity--a net deviation of 53 degrees across five residues. But this apparent strain is not a factor in catalysis, as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead due to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds.
Collapse
Affiliation(s)
- Donald S Berkholz
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS, Corvallis, OR 97331-7305, USA
| | | | | | | |
Collapse
|
34
|
Feng J, Goswami S, Howell EE. R67, the other dihydrofolate reductase: rational design of an alternate active site configuration. Biochemistry 2007; 47:555-65. [PMID: 18085798 DOI: 10.1021/bi701455x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
R67 dihydrofolate reductase (DHFR) bears no sequence or structural homologies with chromosomal DHFRs. The gene for this enzyme produces subunits that are 78 amino acids long, which assemble into a homotetramer possessing 222 symmetry. More recently, a tandem array of four gene copies linked in-frame was constructed, which produces a monomer containing 312 amino acids named Quad3. Asymmetric mutations in Quad3 have also been constructed to probe the role of Q67 and K32 residues in catalysis. This present study mixes and matches mutations to determine if the Q67H mutation, which tightens binding approximately 100-fold to both dihydrofolate (DHF) and NADPH, can help rescue the K32M mutation. While the latter mutation weakens DHF binding over 60-fold, it concurrently increases kcat by a factor of 5. Two Q67H mutations were added to gene copies 1 and 4 in conjunction with the K32M mutation in gene copies 1 and 3. Addition of these Q67H mutations tightens binding 40-fold, and the catalytic efficiency (kcat/Km(DHF)) of the resulting protein is similar to that of Quad3. Since these Q67H mutations can mostly compensate for the K32M lesion, K32 must not be necessary for DHF binding. Another multimutant combines the K32M mutation in gene copies 1 and 3 with the Q67H mutation in all gene copies. This mutant is inhibited by DHF but not NADPH, indicating that NADPH binds only to the wild type half of the pore, while DHF can bind to either the wild type or mutant half of the pore. This inhibition pattern contrasts with the mutant containing only the Q67H substitution in all four gene copies, which is severely inhibited by both NADPH and substrate. Since gene duplication and divergence are evolutionary tools for gaining function, these constructs are a first step toward building preferences for NADPH and DHF in each half of the active site pore of this primitive enzyme.
Collapse
Affiliation(s)
- Jian Feng
- Department of Biochemistry, Cellular, & Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | |
Collapse
|
35
|
Quaye O, Lountos GT, Fan, Orville AM, Gadda G. Role of Glu312 in Binding and Positioning of the Substrate for the Hydride Transfer Reaction in Choline Oxidase,. Biochemistry 2007; 47:243-56. [DOI: 10.1021/bi7017943] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Osbourne Quaye
- Departments of Chemistry and Biology and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, and School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - George T. Lountos
- Departments of Chemistry and Biology and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, and School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Fan
- Departments of Chemistry and Biology and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, and School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Allen M. Orville
- Departments of Chemistry and Biology and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, and School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Giovanni Gadda
- Departments of Chemistry and Biology and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, and School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
36
|
Affiliation(s)
- David D Boehr
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
37
|
Fabrichniy IP, Lehtiö L, Tammenkoski M, Zyryanov AB, Oksanen E, Baykov AA, Lahti R, Goldman A. A Trimetal Site and Substrate Distortion in a Family II Inorganic Pyrophosphatase. J Biol Chem 2007; 282:1422-31. [PMID: 17095506 DOI: 10.1074/jbc.m513161200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the first crystal structures of a family II pyrophosphatase complexed with a substrate analogue, imidodiphosphate (PNP). These provide new insights into the catalytic reaction mechanism of this enzyme family. We were able to capture the substrate complex both by fluoride inhibition and by site-directed mutagenesis providing complementary snapshots of the Michaelis complex. Structures of both the fluoride-inhibited wild type and the H98Q variant of the PNP-Bacillus subtilis pyrophosphatase complex show a unique trinuclear metal center. Each metal ion coordinates a terminal oxygen on the electrophilic phosphate and a lone pair on the putative nucleophile, thus placing it in line with the scissile bond without any coordination by protein. The nucleophile moves further away from the electrophilic phosphorus site, to the opposite side of the trimetal plane, upon binding of substrate. In comparison with earlier product complexes, the side chain of Lys296 has swung in and so three positively charged side chains, His98, Lys205 and Lys296, now surround the bridging nitrogen in PNP. Finally, one of the active sites in the wild-type structure appears to show evidence of substrate distortion. Binding to the enzyme may thus strain the substrate and thus enhance the catalytic rate.
Collapse
Affiliation(s)
- Igor P Fabrichniy
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Biocenter 3, P. O. Box 65, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bennett B, Langan P, Coates L, Mustyakimov M, Schoenborn B, Howell EE, Dealwis C. Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate. Proc Natl Acad Sci U S A 2006; 103:18493-8. [PMID: 17130456 PMCID: PMC1664550 DOI: 10.1073/pnas.0604977103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen atoms play a central role in many biochemical processes yet are difficult to visualize by x-ray crystallography. Spallation neutron sources provide a new arena for protein crystallography with TOF measurements enhancing data collection efficiency and allowing hydrogen atoms to be located in smaller crystals of larger biological macromolecules. Here we report a 2.2-A resolution neutron structure of Escherichia coli dihydrofolate reductase (DHFR) in complex with methotrexate (MTX). Neutron data were collected on a 0.3-mm(3) D(2)O-soaked crystal at the Los Alamos Neutron Scattering Center. This study provides an example of using spallation neutrons to study protein dynamics, to identify protonation states directly from nuclear density maps, and to analyze solvent structure. Our structure reveals that the occluded loop conformation [monomer (mon.) A] of the DHFR.MTX complex undergoes greater H/D exchange compared with the closed-loop conformer (mon. B), partly because the Met-20 and beta(F-G) loops readily exchange in mon. A. The eight-stranded beta sheet of both DHFR molecules resists H/D exchange more than the helices and loops. However, the C-terminal strand, betaH, in mon. A is almost fully exchanged. Several D(2)Os form hydrogen bonds with exchanged amides. At the active site, the N1 atom of MTX is protonated and thus charged when bound to DHFR. Several D(2)Os are observed at hydrophobic surfaces, including two pockets near the MTX-binding site. A previously unidentified D(2)O hydrogen bonds with the catalytic D27 in mon. B, stabilizing its negative charge.
Collapse
Affiliation(s)
- Brad Bennett
- *Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN 37996; and
| | - Paul Langan
- Los Alamos National Laboratory, Biosciences Division, Mail Stop MS M888, Los Alamos, NM 87545
| | - Leighton Coates
- Los Alamos National Laboratory, Biosciences Division, Mail Stop MS M888, Los Alamos, NM 87545
| | - Marat Mustyakimov
- Los Alamos National Laboratory, Biosciences Division, Mail Stop MS M888, Los Alamos, NM 87545
| | - Benno Schoenborn
- Los Alamos National Laboratory, Biosciences Division, Mail Stop MS M888, Los Alamos, NM 87545
| | - Elizabeth E. Howell
- *Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN 37996; and
| | - Chris Dealwis
- *Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN 37996; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Abstract
This review examines the linkage between protein conformational motions and enzyme catalysis. The fundamental issues related to this linkage are probed in the context of two enzymes that catalyze hydride transfer, namely dihydrofolate reductase and liver alcohol dehydrogenase. The extensive experimental and theoretical studies addressing the role of protein conformational changes in these enzyme reactions are summarized. Evidence is presented for a network of coupled motions throughout the protein fold that facilitate the chemical reaction. This network is comprised of fast thermal motions that are in equilibrium as the reaction progresses along the reaction coordinate and that lead to slower equilibrium conformational changes conducive to the chemical reaction.
Collapse
Affiliation(s)
- Sharon Hammes-Schiffer
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
40
|
Liu T, Whitten ST, Hilser VJ. Ensemble-based signatures of energy propagation in proteins: a new view of an old phenomenon. Proteins 2006; 62:728-38. [PMID: 16284972 DOI: 10.1002/prot.20749] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of a protein to transmit the energetic effects of binding from one site to another constitutes the underlying basis for allosterism and signal transduction. Despite clear experimental evidence indicating the ability of proteins to transmit the effects of binding, the means by which this propagation is facilitated is not well understood. Using our previously developed ensemble-based description of the equilibrium, we investigated the physical basis of energy propagation and identified several fundamental and general aspects of energetic coupling between residues in a protein. First, partitioning of a conformational ensemble into four distinct sub-ensembles allows for explanation of the range of experimentally observed coupling behaviors (i.e., positive, neutral, and negative coupling between various regions of the protein structure). Second, the relative thermodynamic properties of these four sub-ensembles define the energetic coupling between residues as either positive, neutral, or negative. Third, analysis of the structural and thermodynamic features of the states within each sub-ensemble reveals significant variability. This third result suggests that a quantitative description of energy propagation in proteins requires an understanding of the structural and energetic features of more than just one or a few low-energy states, but also of many high-energy states. Such findings illuminate the difficulty in interpreting energy propagation in proteins in terms of a structural pathway that physically links coupled sites.
Collapse
Affiliation(s)
- Tong Liu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
41
|
Kim HS, Damo SM, Lee SY, Wemmer D, Klinman JP. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues. Biochemistry 2005; 44:11428-39. [PMID: 16114879 DOI: 10.1021/bi050630j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) from a moderate thermophilic organism, Bacillus stearothermophilus, has been cloned and expressed. Physical characterization of the protein (BsDHFR) indicates that it is a monomeric protein with a molecular mass of 18,694.6 Da (0.8), coincident with the mass of 18 694.67 Da calculated from the primary sequence. Determination of the X-ray structure of BsDHFR provides the first structure for a monomeric DHFR from a thermophilic organism, indicating a high degree of conservation of structure in relation to all chromosomal DHFRs. Structurally based sequence alignment of DHFRs indicates the following levels of sequence identity and similarity for BsDHFR: 38 and 58% with Escherichia coli, 35 and 56% with Lactobacillus casei, and 23 and 40% with Thermotoga maritima, respectively. Steady state kinetic isotope effect studies indicate an ordered kinetic mechanism at elevated temperatures, with NADPH binding first to the enzyme. This converts to a more random mechanism at reduced temperatures, reflected in a greatly reduced K(m) for dihydrofolate at 20 degrees C in relation to that at 60 degrees C. A reduction in either temperature or pH reduces the degree to which the hydride transfer step is rate-determining for the second-order reaction of DHF with the enzyme-NADPH binary complex. Transient state kinetics have been used to study the temperature dependence of the isotope effect on hydride transfer at pH 9 between 10 and 50 degrees C. The data support rate-limiting hydride transfer with a moderate enthalpy of activation (E(a) = 5.5 kcal/mol) and a somewhat greater temperature dependence for the kinetic isotope effect than predicted from classical behavior [A(H)/A(D) = 0.57 (0.15)]. Comparison of kinetic parameters for BsDHFR to published data for DHFR from E. coli and T. maritima shows a decreasing trend in efficiency of hydride transfer with increasing thermophilicity of the protein. These results are discussed in the context of the capacity of each enzyme to optimize H-tunneling from donor (NADPH) to acceptor (DHF) substrates.
Collapse
Affiliation(s)
- Hui Sun Kim
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | |
Collapse
|
42
|
Tehei M, Smith JC, Monk C, Ollivier J, Oettl M, Kurkal V, Finney JL, Daniel RM. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering. Biophys J 2005; 90:1090-7. [PMID: 16258053 PMCID: PMC1367095 DOI: 10.1529/biophysj.105.062182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is tau = 7.95 +/- 1.02 ps for the native DHFR and tau = 20.36 +/- 1.80 ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.
Collapse
Affiliation(s)
- M Tehei
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Howell EE. Searching sequence space: two different approaches to dihydrofolate reductase catalysis. Chembiochem 2005; 6:590-600. [PMID: 15812782 DOI: 10.1002/cbic.200400237] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are numerous examples of proteins that catalyze the same reaction while possessing different structures. This review focuses on two dihydrofolate reductases (DHFRs) that have disparate structures and discusses how the catalytic strategies of these two DHFRs are driven by their respective scaffolds. The two proteins are E. coli chromosomal DHFR (Ec DHFR) and a type II R-plasmid-encoded DHFR, typified by R67 DHFR. The former has been described as a very well evolved enzyme with an efficiency of 0.15, while the latter has been suggested to be a model for a "primitive" enzyme that has not yet been optimized by evolution. This comparison underlines what is important to catalysis in these two enzymes and concurrently highlights fundamental issues in enzyme catalysis.
Collapse
Affiliation(s)
- Elizabeth E Howell
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA.
| |
Collapse
|
44
|
McElheny D, Schnell JR, Lansing JC, Dyson HJ, Wright PE. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proc Natl Acad Sci U S A 2005; 102:5032-7. [PMID: 15795383 PMCID: PMC556001 DOI: 10.1073/pnas.0500699102] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic processes are implicit in the catalytic function of all enzymes. To obtain insights into the relationship between the dynamics and thermodynamics of protein fluctuations and catalysis, we have measured millisecond time scale motions in the enzyme dihydrofolate reductase using NMR relaxation methods. Studies of a ternary complex formed from the substrate analog folate and oxidized NADP+ cofactor revealed conformational exchange between a ground state, in which the active site loops adopt a closed conformation, and a weakly populated (4.2% at 30 degrees C) excited state with the loops in the occluded conformation. Fluctuations between these states, which involve motions of the nicotinamide ring of the cofactor into and out of the active site, occur on a time scale that is directly relevant to the structural transitions involved in progression through the catalytic cycle.
Collapse
Affiliation(s)
- Dan McElheny
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Roos G, Messens J, Loverix S, Wyns L, Geerlings P. A Computational and Conceptual DFT Study on the Michaelis Complex of pI258 Arsenate Reductase. Structural Aspects and Activation of the Electrophile and Nucleophile. J Phys Chem B 2004. [DOI: 10.1021/jp0486550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goedele Roos
- Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium, and Departement Ultrastructuur, Vlaams interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Joris Messens
- Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium, and Departement Ultrastructuur, Vlaams interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Stefan Loverix
- Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium, and Departement Ultrastructuur, Vlaams interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Lode Wyns
- Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium, and Departement Ultrastructuur, Vlaams interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Paul Geerlings
- Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium, and Departement Ultrastructuur, Vlaams interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
46
|
Strader MB, Chopra S, Jackson M, Smiley RD, Stinnett L, Wu J, Howell EE. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis. Biochemistry 2004; 43:7403-12. [PMID: 15182183 DOI: 10.1021/bi049646k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary complex in these R67 DHFR variants plays a strong role in catalysis. Use of the alternate cofactor, NADH, extends this correlation, indicating preorganization of the ternary complex determines the efficiency of the reaction. This hypothesis is consistent with data suggesting R67 DHFR uses an endo transition state (where the nicotinamide ring of cofactor overlaps the more bulky side of the substrate's pteridine ring).
Collapse
Affiliation(s)
- Michael Brad Strader
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Cherepanov AV, De Vries S. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:1-31. [PMID: 15136155 DOI: 10.1016/j.bbabio.2004.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 02/17/2004] [Accepted: 02/17/2004] [Indexed: 11/21/2022]
Abstract
A novel freeze-quench instrument with a characteristic <<dead-time>> of 137 +/- 18 micros is reported. The prototype has several key features that distinguish it from conventional freeze-quench devices and provide a significant improvement in time resolution: (a) high operating pressures (up to 400 bar) result in a sample flow with high linear rates (up to 200 m s(-1)); (b) tangential micro-mixer with an operating volume of approximately 1 nl yields short mixing times (up to 20 micros); (c) fast transport between the mixer and the cryomedium results in short reaction times: the ageing solution exits the mixer as a free-flowing jet, and the chemical reaction occurs "in-flight" on the way to the cryomedium; (d) a small jet diameter (approximately 20 microm) and a high jet velocity (approximately 200 m s(-1)) provide high sample-cooling rates, resulting in a short cryofixation time (up to 30 micros). The dynamic range of the freeze-quench device is between 130 micros and 15 ms. The novel tangential micro-mixer efficiently mixes viscous aqueous solutions, showing more than 95% mixing at eta < or = 4 (equivalent to protein concentrations up to 250 mg ml(-1)), which makes it an excellent tool for the preparation of pre-steady state samples of concentrated protein solutions for spectroscopic structure analysis. The novel freeze-quench device is characterized using the reaction of binding of azide to metmyoglobin from horse heart. Reaction samples are analyzed using 77 K optical absorbance spectroscopy, and X-band EPR spectroscopy. A simple procedure of spectral analysis is reported that allows (a) to perform a quantitative analysis of the reaction kinetics and (b) to identify and characterize novel reaction intermediates. The reduction of dioxygen by the bo3-type quinol oxidase from Escherichia coli is assayed using the MHQ technique. In these pilot experiments, low-temperature optical absorbance measurements show the rapid oxidation of heme o3 in the first 137 micros of the reaction, accompanied by the formation of an oxo-ferryl species. X-band EPR spectroscopy shows that a short-living radical intermediate is formed during the oxidation of heme o3. The radical decays within approximately 1 ms concomitant with the oxidation of heme b, and can be attributed to the PM reaction intermediate converting to the oxoferryl intermediate F. The general field of application of the freeze-quench methodology is discussed.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | |
Collapse
|
48
|
Abstract
Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.
Collapse
Affiliation(s)
- Jason R Schnell
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
49
|
Youngman EM, Brunelle JL, Kochaniak AB, Green R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 2004; 117:589-99. [PMID: 15163407 DOI: 10.1016/s0092-8674(04)00411-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/18/2004] [Accepted: 03/24/2004] [Indexed: 11/17/2022]
Abstract
Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally conserved nucleotides in the innermost layer of the active site: A2451, U2506, U2585, and A2602. While pre-steady-state kinetic analysis of the peptidyl transferase activity of the mutant ribosomes reveals substantially reduced rates of peptide bond formation using the minimal substrate puromycin, their rates of peptide bond formation are unaffected when the substrates are intact aminoacyl-tRNAs. These mutant ribosomes do, however, display substantial defects in peptide release. These results reveal a view of the catalytic center in which an inner shell of conserved nucleotides is pivotal for peptide release, while an outer shell is responsible for promoting peptide bond formation.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | | | | | |
Collapse
|
50
|
Garcia-Viloca M, Truhlar DG, Gao J. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 2004; 42:13558-75. [PMID: 14622003 DOI: 10.1021/bi034824f] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) and the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH); the substrate is 5-protonated 7,8-dihydrofolate, and the product is tetrahydrofolate. The potential energy surface is modeled by a combined quantum mechanical-molecular mechanical (QM/MM) method employing Austin model 1 (AM1) and a simple valence bond potential for 69 QM atoms and employing the CHARMM22 and TIP3P molecular mechanics force fields for the other 21 399 atoms; the QM and MM regions are joined by two boundary atoms treated by the generalized hybrid orbital (GHO) method. All simulations are carried out using periodic boundary conditions at neutral pH and 298 K. In stage 1, a reaction coordinate is defined as the difference between the breaking and forming bond distances to the hydride ion, and a quasithermodynamic free energy profile is calculated along this reaction coordinate. This calculation includes quantization effects on bound vibrations but not on the reaction coordinate, and it is used to locate the variational transition state that defines a transition state ensemble. Then, the key interactions at the reactant, variational transition state, and product are analyzed in terms of both bond distances and electrostatic energies. The results of both analyses support the conclusion derived from previous mutational studies that the M20 loop of DHFR makes an important contribution to the electrostatic stabilization of the hydride transfer transition state. Third, transmission coefficients (including recrossing factors and multidimensional tunneling) are calculated and averaged over the transition state ensemble. These averaged transmission coefficients, combined with the quasithermodynamic free energy profile determined in stage 1, allow us to calculate rate constants, phenomenological free energies of activation, and primary and secondary kinetic isotope effects. A primary kinetic isotope effect (KIE) of 2.8 has been obtained, in good agreement with the experimentally determined value of 3.0 and with the value 3.2 calculated previously. The primary KIE is mainly a consequence of the quantization of bound vibrations. In contrast, the secondary KIE, with a value of 1.13, is almost entirely due to dynamical effects on the reaction coordinate, especially tunneling.
Collapse
Affiliation(s)
- Mireia Garcia-Viloca
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|