1
|
Bao M, Bohórquez ARR, Arman H, Doyle MP. Photoinduced [4 + 2]-cycloaddition reactions of vinyldiazo compounds for the construction of heterocyclic and bicyclic rings. Chem Sci 2024; 15:12042-12046. [PMID: 39092125 PMCID: PMC11290432 DOI: 10.1039/d4sc03558e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Highly selective formal [4 + 2]-cycloaddition of vinyldiazoacetates with azoalkenes from α-halohydrazones, as well as with cyclopentadiene and furan, occurs with light irradiation at room temperature, producing highly functionalized heterocyclic and bicyclic compounds in good yields and excellent diastereoseletivity. Under blue light these vinyldiazoacetate reagents selectively form unstable cyclopropenes that undergo intermolecular cycloaddition reactions at a faster rate than their competitive ene dimerization. [4 + 2]-cycloaddition of vinyldiazoacetates with in situ formed azoalkenes produces bicyclo[4.1.0]tetrahydropyridazine derivatives and, together with their cycloaddition using cyclopentadiene and furan that form tricyclic compounds, they occur with high chemoselectivity and diastereocontrol, good functional group tolerance, and excellent scalability. Subsequent transformations portray the synthetic versatility of these structures.
Collapse
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio San Antonio Texas 78249 USA
| | - Arnold R Romero Bohórquez
- Department of Chemistry, The University of Texas at San Antonio San Antonio Texas 78249 USA
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander A. A. 678 Piedecuesta Colombia
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio San Antonio Texas 78249 USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio San Antonio Texas 78249 USA
| |
Collapse
|
2
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
3
|
Bao M, Łuczak K, Chaładaj W, Baird M, Gryko D, Doyle MP. Photo-cycloaddition reactions of vinyldiazo compounds. Nat Commun 2024; 15:4574. [PMID: 38811537 PMCID: PMC11137122 DOI: 10.1038/s41467-024-48274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Heterocyclic rings are important structural scaffolds encountered in both natural and synthetic compounds, and their biological activity often depends on these motifs. They are predominantly accessible via cycloaddition reactions, realized by either thermal, photochemical, or catalytic means. Various starting materials are utilized for this purpose, and, among them, diazo compounds are often encountered, especially vinyldiazo compounds that give access to donor-acceptor cyclopropenes which engage in [2+n] cycloaddition reactions. Herein, we describe the development of photochemical processes that produce diverse heterocyclic scaffolds from multisubstituted oximidovinyldiazo compounds. High chemoselectivity, good functional group tolerance, and excellent scalability characterize this methodology, thus predisposing it for broader applications. Experimental and computational studies reveal that under light irradiation these diazo reagents selectively transform into cyclopropenes which engage in cycloaddition reactions with various dipoles, while under thermal conditions the formation of pyrazole from vinyldiazo compounds is favored.
Collapse
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Klaudia Łuczak
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Marriah Baird
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
4
|
Xie Y, Zhang R, Chen Z, Rong M, He H, Ni S, He X, Xiao W, Xuan J. Photocatalytic Boryl Radicals Triggered Sequential B─N/C─N Bond Formation to Assemble Boron-Handled Pyrazoles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306728. [PMID: 38018506 PMCID: PMC10797447 DOI: 10.1002/advs.202306728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Vinyldiazo compounds are one of the most important synthons in the construction of a cyclic ring. Most photochemical transformations of vinyldiazo compounds are mainly focusing on utilization of their C═C bond site, while reactions taking place at terminal nitrogen atom are largely unexplored. Herein, a photocatalytic cascade radical cyclization of LBRs with vinyldiazo reagents through sequential B─N/C─N bond formation is described. The reaction starts with the addition of LBRs (Lewis base-boryl radicals) at diazo site, followed by intramolecular radical cyclization to access a wide range of important boron-handled pyrazoles in good to excellent yields. Control experiments, together with detailed mechanism studies well explain the observed reactivity. Further studies demonstrate the utility of this approach for applications in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Ruilong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Ze‐Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Mengtao Rong
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| | - Hui He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityShantouGuangdong515063P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityShantouGuangdong515063P. R. China
| | - Xiang‐Kui He
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanHubei430079P. R. China
| | - Wen‐Jing Xiao
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanHubei430079P. R. China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui ProvinceCollege of Chemistry & Chemical EngineeringAnhui UniversityHefeiAnhui230601P. R. China
| |
Collapse
|
5
|
Li S, Zhou L. gem-Difluoro-Masked o-Quinone Methides Generated by Photocatalytic Radical (3+3) Annulation and Their (4+1) Cycloaddition with Sulfur Ylides. Org Lett 2023. [PMID: 37996080 DOI: 10.1021/acs.orglett.3c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A visible light-promoted radical (3+3) annulation of vinyldiazo compounds and bromodifluoromethyl alkynyl ketones for the construction of gem-difluoro-masked o-quinone methides (o-QMs) is described. The reactivity of this new type of o-QM precursor is demonstrated by its (4+1) cycloaddition with sulfur ylides, affording monofluorinated aromatic benzofurans by the elimination of HBr without external oxidants.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Li W, Li S, Empel C, Koenigs RM, Zhou L. Photoredox-Enabled Self-(3+2) Cyclization of Vinyldiazo Reagents: Synthesis of Cyclopentenyl α-Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202309947. [PMID: 37649245 DOI: 10.1002/anie.202309947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
A photocatalytic self-(3+2) cycloaddition of vinyldiazo compounds is described, which provides cyclopentene derivatives with conservation of one diazo functional group. Experimental insights and density functional theory indicate that the reaction is triggered by an unusual single electron oxidation of vinyldiazo compounds, while the photolysis for the generation of free carbene species is not involved. The synthetic applications of the resulting cyclopentenyl α-diazo compounds were demonstrated based on the rich chemistry of the diazo functional group.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Sen Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Miguélez R, Barrio P, González JM. Recent Advances in the Catalytic Synthesis of the Cyclopentene Core. CHEM REC 2023:e202300254. [PMID: 37821421 DOI: 10.1002/tcr.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C-H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.
Collapse
Affiliation(s)
- Rubén Miguélez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - José M González
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
8
|
Zheng R, Xu A, Zhang T, Li P, Shi M, Dong S, Hu W, Qian Y. Asymmetric Acyclic 1,3-Difunctionalization of Vinyl Carbenes via Site-Selective Vinylogous Mannich-Type Interception of Oxonium Ylides. Org Lett 2023. [PMID: 37440433 DOI: 10.1021/acs.orglett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A novel and highly stereoselective acyclic 1,3-difunctionalization of vinyl metal carbene species has been developed via Rh(II)/chiral phosphoric acid co-catalyzed three-component reactions of vinyldiazoacetates with alcohols and imines. This innovative approach features excellent regio-, diastereo-, and enantioselectivities, demonstrating a broad scope and functional group compatibility. Notably, this is the first example of three-component asymmetric acyclic 1,3-difunctionalization with in situ-formed vinyl metal carbenes.
Collapse
Affiliation(s)
- Rimei Zheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tianyuan Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Pei Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Maoqing Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
9
|
Khot NP, Nagtilak PJ, Deo NK, Kapur M. A three component 1,3-difunctionalization of vinyl diazo esters enabled by a cobalt catalyzed C-H activation/carbene migratory insertion. Chem Commun (Camb) 2023; 59:6076-6079. [PMID: 37114935 DOI: 10.1039/d3cc00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We report herein, a modular, regioselective 1,3-oxyarylation of vinyl diazo esters via a Co-catalyzed C-H activation/carbene migratory insertion cascade. The transformation involves the formation of C-C and C-O bonds in a one-pot fashion and displays a broad substrate scope with respect to both, vinyl diazo esters as well as benzamides. The coupled products were subjected to hydrogenation to access elusive allyl alcohol scaffolds. Mechanistic investigations reveal interesting insights on the mode of transformation, involving C-H activation, carbene migratory insertion of the diazo compound followed by a radical addition as the key steps of the transformation.
Collapse
Affiliation(s)
- Nandkishor Prakash Khot
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Prajyot Jayadev Nagtilak
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Nitish Kumar Deo
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Manmohan Kapur
- Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Stefkova K, Guerzoni MG, van Ingen Y, Richards E, Melen RL. B(C 6F 5) 3-Catalyzed Diastereoselective and Divergent Reactions of Vinyldiazo Esters with Nitrones: Synthesis of Highly Functionalized Diazo Compounds. Org Lett 2023; 25:500-505. [PMID: 36634071 PMCID: PMC9887602 DOI: 10.1021/acs.orglett.2c04198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Herein we report a mild, transition-metal-free, highly diastereoselective Lewis acid catalyzed methodology toward the synthesis of isoxazolidine-based diazo compounds from the reaction between vinyldiazo esters and nitrones. Interestingly, the isoxazolidine products were identified to have contrasting diastereoselectivity to previously reported metal-catalyzed reactions. Furthermore, the same catalyst can be used with enol diazo esters, prompting the formation of Mukaiyama-Mannich products. These diazo products can then be further functionalized to afford benzo[b]azepine and pyrrolidinone derivatives.
Collapse
Affiliation(s)
| | | | - Yara van Ingen
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| | - Emma Richards
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
11
|
Yang Y, Liu S, Li S, Liu Z, Liao P, Sivaguru P, Lu Y, Gao J, Bi X. Site-Selective C-H Allylation of Alkanes: Facile Access to Allylic Quaternary sp 3 -Carbon Centers. Angew Chem Int Ed Engl 2023; 62:e202214519. [PMID: 36428220 DOI: 10.1002/anie.202214519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The construction of allylic quaternary sp3 -carbon centers has long been a formidable challenge in transition-metal-catalyzed alkyl-allyl coupling reactions due to the severe steric hindrance. Herein, we report an effective carbene strategy that employs well-defined vinyl-N-triftosylhydrazones as a versatile allylating reagent to enable direct assembly of these medicinally desirable structural elements from low-cost alkane feedstocks. The reaction exhibited excellent site selectivity for tertiary C-H bonds, broad scope (>60 examples and >20 : 1:0 r. r.) and good efficiency, even on a gram-scale, making it a convenient alternative to the well-known Trost-Tsuji allylation reaction for the formation of alkyl-allyl bonds. Combined experimental and computational studies were employed to unravel the mechanism and origin of site- and chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | | | | | - Ying Lu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jiaojiao Gao
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
12
|
Wu R, Chen Y, Zhu S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Wu Y, Ning Y, Han X, Liao P, Xia Y, Sivaguru P, Bi X. Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- N-triftosylhydrazones. Org Lett 2022; 24:8136-8141. [DOI: 10.1021/acs.orglett.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Peiqiu Liao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Coinage metal-catalyzed carbo- and heterocyclizations involving alkenyl carbene intermediates as C3 synthons. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhu Y, Yang L, Zhang X, Xu W, He J, Wang H, Lang M, Peng S. Copper-Catalyzed Cycloadditions of Diazo Compounds with Imidazolidines/Hexahydropyrimidines for the Syntheses of N-Heterocycles. Org Lett 2022; 24:6443-6448. [PMID: 36017905 DOI: 10.1021/acs.orglett.2c02561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein are the unprecedented copper-catalyzed formal [n + 1]/[n + 3] (n = 5, 6) cycloadditions of diazo compounds with imidazolidines/hexahydropyrimidines, thus providing a general, economical, and efficient route to construct different sized (six- to nine-membered) diaza-heterocycles in moderate to excellent yields under mild reaction conditions. This strategy features the use of copper catalyst to accomplish such diverse annulations and the utilization of imidazolidines/hexahydropyrimidines as stable 1,5-/1,6-dipoles.
Collapse
Affiliation(s)
- Yuqi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
16
|
Dattatri, Singam MKR, Nanubolu JB, Reddy MS. Cu-Catalyzed tandem cyclization and coupling of enynones with enaminones for multisubstituted furans & furano-pyrroles. Org Biomol Chem 2022; 20:6363-6367. [PMID: 35861157 DOI: 10.1039/d2ob00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy that efficiently constructs complex molecular diversity in a few steps will always be embraced by organic chemists. Here, we report a cascade reaction of enynones with enaminones via carbene insertion and aryl migration to engineer distinctive multisubstituted furans with an all-carbon quaternary center, and could extend the protocol in the same pot towards furano-pyrrole bis-heterocycles. Heterogeneity of this protocol was proved with the upshot of divergent chemical space under a relatively mild reaction environment.
Collapse
Affiliation(s)
- Dattatri
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
17
|
Brambilla E, Abbiati G, Caselli A, Pirovano V, Rossi E. Coinage metal carbenes in heterocyclic synthesis via formation of new carbon-heteroatom bonds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Bernardo O, Yamamoto K, Fernández I, López LA. Reactivity of Stabilized Vinyldiazo Compounds toward Alkenyl- and Alkynylsilanes under Gold Catalysis: Regio- and Stereoselective Synthesis of Skipped Dienes and Enynes. Org Lett 2021; 23:4452-4456. [PMID: 33983038 PMCID: PMC8900156 DOI: 10.1021/acs.orglett.1c01381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the gold-catalyzed reaction
of vinyldiazo compounds and
alkenylsilanes to produce skipped dienes, which are common structural
motifs in an array of bioactive compounds. This carbon–carbon
bond-forming transformation proceeds with complete regio- and stereoselectivity
with the silyl group serving as a regio- and stereocontrolling element.
Likewise, the use of alkynylsilanes as reaction partners yielded skipped
enynes resulting from a C(sp)–C(sp3) coupling. Mechanistic
experiments and DFT studies have provided support for a stepwise mechanism.
Collapse
Affiliation(s)
- Olaya Bernardo
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| | - Kota Yamamoto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Luis A López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| |
Collapse
|
20
|
Li W, Zhou L. Vinyldiazo Compounds as 3-Carbon Radical Acceptors: Synthesis of 4-Fluoroacridines via Visible-Light-Promoted Cascade Radical Cyclization. Org Lett 2021; 23:4279-4283. [PMID: 34029108 DOI: 10.1021/acs.orglett.1c01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vinyldiazo reagents were developed as the radical acceptors in a visible-light-promoted sequential radical cyclization reaction, providing a mechanistically distinct pathway to achieve (3 + 3) cyclization. Using N-aryl chlorodifluoromethyl alkynyl ketoimines as the radical precursors, the reaction allows the introduction of a fluorine atom to the acridine skeleton during the construction of both the pyridine and benzene motifs from acyclic building blocks. The resulting 4-fluoroacridines exhibited pronounced fluorescent properties in the solid state.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
McDaniel J, Farley CA, Ramirez A, Sandhu B, Sarjeant A, Shi Q, Han A, Gallagher WP, Hynes J, Dhar TGM, Gonzalez-Bobes F, Coombs JR, Marcoux D. Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Org Lett 2021; 23:60-65. [PMID: 33351641 DOI: 10.1021/acs.orglett.0c03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of the unprecedented annulating reagents methyl N-(tert-butylsulfinyl)-4-chlorobutanimidate and methyl N-(tert-butylsulfinyl)-5-bromopentanimidate enables the diastereoselective preparation of 5- and 6-membered carbocycles bearing three contiguous stereocenters. These synthons undergo cycloaddition with a variety of Michael acceptors to form cyclopentane/cyclohexane rings with excellent stereochemical control, generating only one of the eight possible diastereomers. This novel methodology has enabled the highly enantioselective and high yielding synthesis of novel chemotypes of pharmacological relevance.
Collapse
Affiliation(s)
- Jade McDaniel
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Christopher A Farley
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bhupinder Sandhu
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy Sarjeant
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Qing Shi
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Arthur Han
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - William P Gallagher
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John Hynes
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Francisco Gonzalez-Bobes
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R Coombs
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David Marcoux
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
22
|
Kardile RD, Liu RS. Gold(I)-Catalyzed Reactions between 2-(1-Alkynyl)-2-alken-1-ones and Vinyldiazo Ketones for Divergent Synthesis of Nonsymmetric Heteroaryl-Substituted Triarylmethanes: N- versus C-Attack Paths. Org Lett 2020; 22:8229-8233. [DOI: 10.1021/acs.orglett.0c02765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Dadabhau Kardile
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
23
|
Jiao Y, Chen A, Yu B, Huang H. Brønsted Acid Catalyzed Cyclization of Aminodiazoesters with Aldehydes to 3-Carboxylate- N-Heterocycles. Org Lett 2020; 22:6031-6034. [PMID: 32790426 DOI: 10.1021/acs.orglett.0c02125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Brønsted acid catalyzed cyclization of aminodiazoesters with aldehydes is described. This reaction features broad substrate generality and functional group compatibility, affording a wide range of 5-7-membered 3-carboxylate-N-heterocycles containing different functional groups. The title products are able to be further elaborated through simple functional group transformations to produce synthetically useful N-heterocycles.
Collapse
Affiliation(s)
- Yang Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Anrong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, 230026, P. R. China
| |
Collapse
|
24
|
Yamamoto K, López E, Barrio P, Borge J, López LA. Gold-Catalyzed [3+2] Carbocycloaddition Reaction of Pinacol Alkenylboronates: Stereospecific Synthesis of Boryl-Functionalized Cyclopentene Derivatives. Chemistry 2020; 26:6999-7003. [PMID: 32237097 DOI: 10.1002/chem.202001192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Gold-catalysis has enabled new synthetic opportunities in the chemistry of vinyldiazo compounds. Herein, we report the gold-catalyzed reaction of stabilized vinyldiazo compounds with pinacol alkenylboronates to provide boryl-functionalized cyclopentene derivatives through a formal [3+2] carbocycloaddition reaction, a very unusual pathway in alkenylboronate chemistry. This reaction proceeds with high regio- and stereoselectivity. The synthetic usefulness of the resulting borylated cyclopentene derivatives toward the synthesis of densely functionalized cyclopentanoids is also demonstrated.
Collapse
Affiliation(s)
- Kota Yamamoto
- Departamento de Química Orgánica e Inorgánica and Instituto, Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006-, Oviedo, Spain
| | - Enol López
- Departamento de Química Orgánica e Inorgánica and Instituto, Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006-, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica and Instituto, Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006-, Oviedo, Spain
| | - Javier Borge
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006-, Oviedo, Spain
| | - Luis A López
- Departamento de Química Orgánica e Inorgánica and Instituto, Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006-, Oviedo, Spain
| |
Collapse
|
25
|
Fang R, Yang L, Zhou L, Kirillov AM, Yang L. Carbocation versus Carbene Controlled Chemoselectivity: DFT Study on Gold- and Silver-Catalyzed Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 2020; 22:4043-4048. [PMID: 32356993 DOI: 10.1021/acs.orglett.0c01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Density functional theory calculations were performed to investigate the catalyst-controlled selective functionalization of indoles with vinyl diazoacetates. The detailed reaction mechanism was established, and different roles of carboncation or carbene intermediates in defining an experimentally observed chemo- and regioselectivity were fully rationalized.
Collapse
Affiliation(s)
- Ran Fang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.,State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lin Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.,State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
26
|
Sekar Kulandai Raj A, Liu R. Gold‐catalyzed [4+3]‐Annulations of Benzopyriliums with Vinyldiazo Carbonyls to Form Bicyclic Heptatriene Rings with Skeletal Rearrangement. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antony Sekar Kulandai Raj
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| | - Rai‐Shung Liu
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| |
Collapse
|
27
|
Cheng H, Yao X, Yin S, Wang T, Zhang Z. Stereoselective Synthesis of (E)-3-Alkylideneoxindoles via Gold(I)-Catalyzed Cross-Coupling of 3-Diazooxindoles with Diazoesters. J Org Chem 2020; 85:5863-5871. [PMID: 32223158 DOI: 10.1021/acs.joc.0c00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haiyang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Xinbo Yao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Shiwei Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
28
|
Wang Z, Xu G, Tang S, Shao Y, Sun J. Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 2019; 21:8488-8491. [DOI: 10.1021/acs.orglett.9b03323] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
29
|
Zhang J, Shan C, Zhang T, Song J, Liu T, Lan Y. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
López LA, González J. Copper(i)-carbenes as key intermediates in the [3 + 2]-cyclization of pyridine derivatives with alkenyldiazoacetates: a computational study. Org Biomol Chem 2019; 17:646-654. [PMID: 30575834 DOI: 10.1039/c8ob02676a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work reports a computational study of the copper(i)-catalyzed regioselective synthesis of indolizine derivatives through the [3 + 2]-cyclization reaction of vinyldiazo acetates and pyridine derivatives. This reaction is predicted to proceed via a multi-step process with the initial decomposition of the diazo function and generation of an electrophilic copper(i) carbene intermediate. Subsequent attack of the pyridine derivative at the vinylogous position of the carbene would generate a vinylcuprate intermediate that would evolve to the final products through a sequence involving cyclization, reductive elimination, metal decoordination and final oxidative aromatization. According to our calculations, an alternative pathway involving the initial activation of the pyridine seems unlikely. These theoretical results could pave the way for further developments in vinyldiazo chemistry.
Collapse
Affiliation(s)
- Luis A López
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
31
|
Sarabia FJ, Li Q, Ferreira EM. Cyclopentene Annulations of Alkene Radical Cations with Vinyl Diazo Species Using Photocatalysis. Angew Chem Int Ed Engl 2018; 57:11015-11019. [PMID: 29964359 PMCID: PMC6319273 DOI: 10.1002/anie.201805732] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Indexed: 12/22/2022]
Abstract
A direct (3+2) cycloaddition between alkenes and vinyl diazo reagents using either Cr or Ru photocatalysis is described. The intermediacy of a radical cation species enables a nucleophilic interception by vinyl diazo compounds, a departure from their traditional electrophilic behavior. A variety of cyclopentenes are synthesized using this method, and experimental insights implicate a direct cycloaddition instead of a cyclopropanation/rearrangement process.
Collapse
Affiliation(s)
| | - Qiankun Li
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Eric M Ferreira
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
32
|
Sarabia FJ, Li Q, Ferreira EM. Cyclopentene Annulations of Alkene Radical Cations with Vinyl Diazo Species Using Photocatalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Qiankun Li
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Eric M. Ferreira
- Department of Chemistry University of Georgia Athens GA 30602 USA
| |
Collapse
|
33
|
Mokar BD, Jadhav PD, Pandit YB, Liu RS. Gold-catalyzed (4 + 2)-annulations between α-alkyl alkenylgold carbenes and benzisoxazoles with reactive alkyl groups. Chem Sci 2018; 9:4488-4492. [PMID: 30079175 PMCID: PMC6049024 DOI: 10.1039/c8sc00986d] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/21/2018] [Indexed: 12/16/2022] Open
Abstract
This work reports new (4 + 2)-annulations of α-alkyl vinylgold carbenes with benzisoxazoles to afford 3,4-dihydroquinoline derivatives with high anti-stereoselectivity.
This work reports new (4 + 2)-annulations of α-alkyl vinylgold carbenes with benzisoxazoles to afford 3,4-dihydroquinoline derivatives with high anti-stereoselectivity. The annulations are operable with carbenes in both acyclic and cyclic forms. This reaction sequence involves an initial formation of imines from α-alkylgold carbenes and benzisoxazoles, followed by a novel carbonyl-enamine reaction to yield 3,4-dihydroquinoline derivatives. This system presents the first alkyl C–H reactivity of α-alkyl gold carbenes with an external substrate.
Collapse
Affiliation(s)
- Bhanudas Dattatray Mokar
- Frontier Research Centers for Materials Science and Technology , Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China .
| | - Prakash D Jadhav
- Frontier Research Centers for Materials Science and Technology , Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China .
| | - Y B Pandit
- Frontier Research Centers for Materials Science and Technology , Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China .
| | - Rai-Shung Liu
- Frontier Research Centers for Materials Science and Technology , Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China .
| |
Collapse
|
34
|
Cheng Q, Yu Y, Yedoyan J, Doyle MP. Vinyldiazo Reagents and Metal Catalysts: A Versatile Toolkit for Heterocycle and Carbocycle Construction. ChemCatChem 2018. [DOI: 10.1002/cctc.201701346] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qing‐Qing Cheng
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Yang Yu
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Julietta Yedoyan
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
35
|
Pei G, Liu Y, Chen G, Yuan X, Jiang YY, Bi S. Unveiling the mechanisms and secrets of chemoselectivities in Au(i)-catalyzed diazo-based couplings with aryl unsaturated aliphatic alcohols. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01352g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms and origins of the unsaturated-aliphatic-alcohols-modulated chemoselectivity of Au-catalyzed carbene transfers from diazo compounds are disclosed by DFT studies.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Guang Chen
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
- Institute of Functional Materials and Molecular Imaging
| | - Xiangai Yuan
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yuan-Ye Jiang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Siwei Bi
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|
36
|
Zhu C, Wang CQ, Feng C. Recent advance in transition-metal-catalyzed oxidant-free 4+1 annulation through C–H bond activation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Xu G, Liu K, Dai Z, Sun J. Gold/silver-catalyzed controllable regioselective vinylcarbene insertion into O–H bonds. Org Biomol Chem 2017; 15:2345-2348. [DOI: 10.1039/c7ob00338b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The controllable regioselective vinylcarbene insertion into O–H bonds of 2-pyridones/benzyl alcohols has been realized.
Collapse
Affiliation(s)
- Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Kai Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Zhenya Dai
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
38
|
Huang D, Xu G, Peng S, Sun J. Gold-catalyzed highly regio- and enantioselective vinylcarbene insertion into O–H bonds of 2-pyridones. Chem Commun (Camb) 2017; 53:3197-3200. [DOI: 10.1039/c6cc10246h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first gold-catalyzed enantioselective carbene insertion into O–H bonds has been achieved.
Collapse
Affiliation(s)
- Daorui Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Shiyong Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology and School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|