1
|
Cherniakova M, Varchenko V, Belikov K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. CHEM REC 2024; 24:e202300267. [PMID: 37861277 DOI: 10.1002/tcr.202300267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
In the last 10 years the interest in deep eutectic solvents (DESs) as a new class of green solvents has considerably increased. The emergence of numerous of hydrophobic DESs has stimulated intensive research into their application in extraction technologies, including sample preparation. As the properties of such systems are highly dependent on the properties of their components (hydrogen bond donors and acceptors) and can be finely tuned, DESs can be successfully used for the extraction of both metal ions and organic substances, including biomolecules. Despite the rapidly increasing number of publications on the use of DESs as an extraction medium, including review articles, information on the extraction properties of DESs in terms of their chemical composition has not yet been summarized. This review covers available literature data on the physicochemical properties of menthol-based eutectic solvents and the results of their practical application as an extraction medium. Also, the appropriateness of using the term "DES" for all mixtures with melting points lower than the melting points of their components is discussed.
Collapse
Affiliation(s)
- Marharyta Cherniakova
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Victoria Varchenko
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Konstantin Belikov
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
- School of Chemistry, V.N. Karazin Kharkiv National University, 6 Svobody sq., 61022, Kharkiv, Ukraine
| |
Collapse
|
2
|
Rather IA, Ali R. A Facile Deep Eutectic Solvent (DES) Mediated Green Approach for the Synthesis of Fluorescein and Phenolphthalein Dyes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Rather I, Alotaibi SH, Alotaibi MT, Altaf M, Ali R. Deep Eutectic Solvent (DES)-Mediated One-Pot Multicomponent Green Approach for Naphthalimide-Centered Acridine-1,8-dione Derivatives and Their Photophysical Properties. ACS OMEGA 2022; 7:35825-35833. [PMID: 36249394 PMCID: PMC9558244 DOI: 10.1021/acsomega.2c04026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
An efficient and green methodology to assemble various functionalized naphthalimide-centered acridine-1,8-dione derivatives involving a one-pot multicomponent protocol has successfully been developed. Herein, a variety of aromatic aldehydes, 1,3-diketones, 1,8-naphthanoic anhydride, and hydrazine hydrate have been condensed under a reusable, inexpensive, and biodegradable deep eutectic solvent (DES) of N,N'-dimethyl urea and l-(+)-tartaric acid to obtain the desired targets under operationally mild reaction conditions with outstanding conversions. Strikingly, in this strategy, the DES plays a dual role of a catalyst and solvent and was recycled efficiently in four consecutive runs with no substantial drop in the yield of the desired product. Interestingly, the easy recovery and high reusability of the DES make this simple yet efficient protocol environmentally desirable. Moreover, the preliminary photophysical properties of thus-prepared valuable molecules have also been investigated by ultraviolet-visible (UV-vis) and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Rather
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India
| | - Saad H. Alotaibi
- Department
of Chemistry, Turabah University College,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed T. Alotaibi
- Department
of Chemistry, Turabah University College,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Altaf
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 24555, Riyadh 11451, Saudi Arabia
| | - Rashid Ali
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India
| |
Collapse
|
4
|
Hammond OS, Atri R, Bowron DT, Edler KJ. Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Water. Chemistry 2022; 28:e202200566. [PMID: 35510678 PMCID: PMC9400976 DOI: 10.1002/chem.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/09/2022]
Abstract
Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride‐malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium]+ cations associate strongly with the indole π‐system due to electrostatics, whereas malic acid is only weakly associated. Trace water is sequestered into the DES and does not interact strongly with indole. When water is added to the DES, it does not interact with the indole π‐system but is exclusively in‐plane with the heterocyclic rings, forming strong H‐bonds with the ‐NH group, and also weak H‐bonds and thus prominent hydrophobic hydration of the indole aromatic region, which could direct selectivity in reactions.
Collapse
Affiliation(s)
- Oliver S. Hammond
- Centre for Sustainable Chemical Technologies and Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K
- Current address: Department of Materials and Environmental Chemistry Stockholm University Stockholm Sweden
| | - Ria Atri
- Centre for Sustainable Chemical Technologies and Department of Chemical Engineering University of Bath Claverton Down Bath BA2 7AY U.K
| | - Daniel T. Bowron
- ISIS Neutron and Muon Source Science and Technology Facilities Council Rutherford Appleton Laboratory Didcot OX11 0QX U.K
| | - Karen J. Edler
- Centre for Sustainable Chemical Technologies and Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K
| |
Collapse
|
5
|
Suzuki H, Kawai Y, Takemura Y, Matsuda T. Rhodium-catalysed decarbonylative C(sp 2)-H alkylation of indolines with alkyl carboxylic acids and carboxylic anhydrides under redox-neutral conditions. Org Biomol Chem 2022; 20:2808-2812. [PMID: 35318479 DOI: 10.1039/d2ob00249c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed a rhodium-catalysed decarbonylative C(sp2)-H alkylation method for indolines. This reaction facilitates the use of alkyl carboxylic acids and their anhydrides as a cheap, abundant and non-toxic alkyl source under redox-neutral conditions, featuring the introduction of a primary alkyl chain, which cannot be addressed by previous radical-mediated decarboxylative reaction. Through a mechanistic investigation, we revealed that an initially formed C-7 acylated indoline was transformed into the corresponding alkylated indoline via a decarbonylation process.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuya Kawai
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yosuke Takemura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
6
|
Rather I, Ali R. An Efficient and Versatile Deep Eutectic Solvent-Mediated Green Method for the Synthesis of Functionalized Coumarins. ACS OMEGA 2022; 7:10649-10659. [PMID: 35382332 PMCID: PMC8973037 DOI: 10.1021/acsomega.2c00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 05/14/2023]
Abstract
Herein, we report a green and efficient synthetic route for the construction of diverse functionalized coumarins in good-to-excellent yields (60-98%) via the Pechmann condensation. The optimized synthetic route involves a biodegradable, reusable, and inexpensive deep eutectic solvent (DES) of choline chloride and l-(+)-tartaric acid in a ratio of 1:2 at 110 °C. Interestingly, phloroglucinol and ethyl acetoacetate, upon reaction, furnished the functionalized coumarin (20) in 98% yield within 10 min. On the other front, the same DES at relatively lower reaction temperature (90 °C) was found to provide the bis-coumarins in decent yields (81-97%) within 20-45 min. Moreover, this particular method was found to be quite effective for large-scale coumarin synthesis without noteworthy reduction in the yields of the desired products. Noticeably, in this versatile approach, the DES plays a dual role as solvent as well as catalyst, and it was effectively recycled and reused four times with no significant drop-down in the yield of the product.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Rather
- Organic and Supramolecular
Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India
| | - Rashid Ali
- Organic and Supramolecular
Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India
| |
Collapse
|
7
|
Rather IA, Ali R, Ali A. Recent developments in calix[4]pyrrole (C4P)-based supramolecular functional systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advances with calix[4]pyrrole-based supramolecular functional entities in the fields of molecular recognition (receptors, sensors, and metal ion caged systems), self-assembly (polymers), photo/pH-responsive molecular switches and catalysis are reviewed.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Ayaaz Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| |
Collapse
|
8
|
Kotha S, Fatma A. Application of Sequential Ring‐Opening, and Ring‐Closing Metathesis or Ring‐Rearrangement Metathesis to Design Oxacycles and Azacycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400076 India
| | - Ambareen Fatma
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400076 India
| |
Collapse
|
9
|
Alvi S, Ali R. An expeditious and highly efficient synthesis of substituted pyrroles using a low melting deep eutectic mixture. Org Biomol Chem 2021; 19:9732-9745. [PMID: 34730166 DOI: 10.1039/d1ob01618k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expeditious green method for the synthesis of diverse valued substituted pyrroles through a Paal-Knorr condensation reaction, using a variety of amines and 2,5-hexanedione/2,5-dimethoxytetrahydrofuran in the presence of a low melting mixture of N,N'-dimethylurea and L-(+)-tartaric acid (which acts as a dual catalyst/solvent system), has fruitfully been revealed. Herein, we have disclosed the applicability of this simple yet effective strategy for the generation of mono- and dipyrroles in good to excellent yields. Moreover, C3-symmetric tripyrrolo-truxene derivatives have also been assembled by means of cyclotrimerization, Paal-Knorr and Clauson-Kaas reactions as crucial steps. Interestingly, the melting mixture was recovered and reused with only a gradual decrease in the catalytic activity (over four cycles) without any significant drop in the yield of the product. This particular methodology is simple, rapid, environmental friendly, and high yielding for the generation of a variety of pyrroles. To the best of our knowledge, the present work reveals the fastest greener method reported up to this date for the construction of substituted pyrroles by utilizing the Paal-Knorr synthetic protocol, achieving impressive yields under operationally simple reaction conditions without involving any precarious/dangerous catalysts or unsafe volatile organic solvents.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India.
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India.
| |
Collapse
|
10
|
Kotha S, Agrawal A, Ansari S. Synthesis of Angular Triquinane and [4.3.3]Propellane Derivatives via Ring‐Rearrangement Olefin Metathesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sambasivarao Kotha
- Arpit Agrawal Saima Ansari Department of Chemistry Indian Institute of Technology, Bombay Powai Mumbai Maharashtra India 400076
| | - Arpit Agrawal
- Arpit Agrawal Saima Ansari Department of Chemistry Indian Institute of Technology, Bombay Powai Mumbai Maharashtra India 400076
| | - Saima Ansari
- Arpit Agrawal Saima Ansari Department of Chemistry Indian Institute of Technology, Bombay Powai Mumbai Maharashtra India 400076
| |
Collapse
|
11
|
Rather IA, Ali R. Investigating the Role of Natural Deep Eutectic Low Melting Mixtures for the Synthesis of Symmetrical Bisamides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
12
|
|
13
|
Ali R, Chinnam AK, Aswar VR. The Double and Triple Role of L-(+)-tartaric Acid and Dimethyl Urea: A Prevailing Green Approach in Organic Synthesis. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210111111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The deep eutectic mixtures (DESs), introduced as a novel alternative to usual volatile
organic solvents for organic transformations, have attracted tremendous attention of the
research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability,
recyclability, insensitivity towards moisture, and ready availability from bulk
renewable resources. Although the low melting mixture of dimethyl urea (DMU)/L-(+)-
tartaric acid (TA) is still in infancy, it is very effective as it plays multiple roles such as solvent,
catalyst and/or reagent in the same pot for many crucial organic transformations. These
unique properties of the DMU/TA mixture prompted us to provide a quick overview of where
the field stands presently and where it might be going in the near future. To our best knowledge,
no review dealing with the applications of a low melting mixture of DMU/TA appeared
in the literature except the one published in 2017, describing only the chemistry of indole systems. Therefore, we
intended to reveal the developments of this versatile, low melting mixture in the modern organic synthesis since its
first report in 2011 by Köenig’s team to date. Hopefully, the present review article will be useful to the researcher
working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of
science and technology.
Collapse
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, United States
| | - Vikas R. Aswar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
14
|
Bühlmeyer A, Ehni P, Ullmann D, Frey W, Baro A, Laschat S. Synthesis and Liquid Crystalline Self‐Assembly of Concave Diindoles with a Hydropentalene Core. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Bühlmeyer
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Philipp Ehni
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Dustin Ullmann
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Angelika Baro
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
15
|
Misal Castro LC, Sultan I, Nishi K, Tsurugi H, Mashima K. Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. J Org Chem 2021; 86:3287-3299. [DOI: 10.1021/acs.joc.0c02661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
16
|
Kotha S, Gupta NK, Aswar VR. Multicomponent Approach to Hydantoins and Thiohydantoins Involving a Deep Eutectic Solvent. Chem Asian J 2019; 14:3188-3197. [DOI: 10.1002/asia.201900744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Naveen K. Gupta
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Vikas R. Aswar
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400 076 India
| |
Collapse
|
17
|
Huang J, Guo X, Xu T, Fan L, Zhou X, Wu S. Ionic deep eutectic solvents for the extraction and separation of natural products. J Chromatogr A 2019; 1598:1-19. [PMID: 31005289 DOI: 10.1016/j.chroma.2019.03.046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
Abstract
Room ionic liquids (ILs) used as green solvents have received considerable attention and wide application in different research and industrial fields, such as chemistry, biology, catalysis, energy, and even environmental sciences. Recently, a new class of sustainable solvents named deep eutectic solvents (DESs) have been developed, which share the promising solvent characteristics of ILs, such as thermal and chemical stability, low vapor pressure and design ability. In addition, the major advantages of DESs over ILs are their lower prices and easier preparation. Therefore, DESs have been considered to be a potential alternative to replace conventional organic solvents and ILs. Currently, the developed DESs may be classified into ionic and nonionic liquids. Typically, choline chloride (ChCl)/urea (1:2) is an ionic DES, while glucose/sucrose (1:1) is a nonionic DES. Although several reviews have covered advancements in DESs, in this review, we aim to provide a general insight into DESs, particularly ionic DESs, like choline-based DES, in terms of their preparation and application in the extraction of natural products (NPs) mainly from traditional Chinese medicines and the recovery of extracted compounds from their extracts. Additionally, various factors affecting the extraction efficiency of DESs are discussed.
Collapse
Affiliation(s)
- Jie Huang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiuyun Guo
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Tianyi Xu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lanyan Fan
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinpeng Zhou
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
18
|
Aggarwal T, Sushmita S, Verma AK. Recent advances in the synthesis of carbazoles from indoles. Org Biomol Chem 2019; 17:8330-8342. [DOI: 10.1039/c9ob01381d] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of carbazoles using indoles as precursors through CH activation/annulation.
Collapse
Affiliation(s)
- Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Sushmita Sushmita
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Akhilesh K. Verma
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
19
|
Mari G, Favi G, Santeusanio S, Mantellini F, De Crescentini L. A practical and effective method for the N–N bond cleavage of N-amino-heterocycles. Org Chem Front 2019. [DOI: 10.1039/c9qo00895k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative, robust, regioselective, metal- and oxidant-free method to cleave the N–N bond of N-amino heterocycles, promoted by 1,2-diaza-1,3-dienes is here presented. The process involves a Michael type addition/E1cb elimination sequence.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences
- Section of Chemistry and Pharmaceutical Technologies
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences
- Section of Chemistry and Pharmaceutical Technologies
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences
- Section of Chemistry and Pharmaceutical Technologies
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences
- Section of Chemistry and Pharmaceutical Technologies
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences
- Section of Chemistry and Pharmaceutical Technologies
- University of Urbino “Carlo Bo”
- 61029 Urbino (PU)
- Italy
| |
Collapse
|
20
|
Kotha S, Todeti S, Das T, Datta A. Synthesis and Photophysical Properties of C3
-Symmetric Star-Shaped Molecules Containing Heterocycles: A New Tactics for Multiple Fischer Indolization. ChemistrySelect 2018. [DOI: 10.1002/slct.201702675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry; Indian Institute of Technology-Bombay, Powai; Mumbai- 400076 India
| | - Saidulu Todeti
- Department of Chemistry; Indian Institute of Technology-Bombay, Powai; Mumbai- 400076 India
| | - Tarasankar Das
- Department of Chemistry; Indian Institute of Technology-Bombay, Powai; Mumbai- 400076 India
| | - Anindya Datta
- Department of Chemistry; Indian Institute of Technology-Bombay, Powai; Mumbai- 400076 India
| |
Collapse
|
21
|
|
22
|
Metal-Free Synthesis of Indoles from Arylhydrazines and Nitroalkenes at Room Temperature. ChemistrySelect 2017. [DOI: 10.1002/slct.201701964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| | | | - Rashid Ali
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| |
Collapse
|