1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Imidazolium-Modified Silica Gel for Highly Selective Preconcentration of Ag(I) from the Nitric Acid Medium. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ion-exchange behavior of an organomineral material with an imidazolium (1-methyl-3-(prop-2-yn-1-yl)-1H-imidazol-3-ium bromide)-modified silica gel was studied for the extraction of Ag(I) from nitric acid media. The extraction from multicomponent systems containing Fe(III), Co(II), Ni(II), Cu(II), Pb(II), and Mn(II) in 100- and 1000-fold molar excesses with respect to Ag(I) was shown to occur with high selectivity. Based on the data of X-ray diffraction and X-ray fluorescence spectroscopy for samples of modified silica gel, a mixed ion exchange–adsorption mechanism for the extraction of Ag(I) was proposed. The effect of the phase contact time and the concentration of nitric acid on the distribution coefficient of Ag(I) was studied. The selectivity factors of the extraction of Ag(I) from multicomponent systems containing foreign cations in 100- and 1000-fold molar excesses under steady-state and dynamic concentration conditions were calculated.
Collapse
|
3
|
Formation of ionic carbon nitride towards an environmentally friendly synthesis of 2-amino-5-alkylidene-thiazol-4-one. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Domingo Huguet D, Gual A, Garcia-Valls R, Nogalska A. Supported Imidazolium-Based Ionic Liquids on a Polysulfone Matrix for Enhanced CO 2 Capture. Polymers (Basel) 2022; 14:polym14224865. [PMID: 36432994 PMCID: PMC9698076 DOI: 10.3390/polym14224865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The present work demonstrates the potential for improved CO2 capture capabilities of ionic liquids (ILs) by supporting them on a polysulfone polymeric matrix. CO2 is one of the main gases responsible for the greenhouse effect and is a focus of The European Commission, which committed to diminishing its emission to 55% by 2023. Various ILs based on combinations of 1-butyl-3-methyl- imidazolium cations and different anions (BMI·X) were synthesized and supported on a polysulfone porous membrane. The influence of the membrane structure and the nature of ILs on the CO2 capture abilities were investigated. It was found that the membrane's internal morphology and its surface characteristics influence its ILs sorption capacity and CO2 solubility. In most of the studied configurations, supporting ILs on porous structures increased their contact surface and gas adsorption compared to the bulk ILs. The phenomenon was strongly pronounced in the case of ILs of high viscosity, where supporting them on porous structures resulted in a CO2 solubility value increase of 10×. Finally, the highest CO2 solubility value (0.24 molCO2/molIL) was obtained with membranes bearing supported ILs containing dicarboxylate anion (BMI.MAL).
Collapse
Affiliation(s)
- David Domingo Huguet
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, C/Marcel·lí Domingo, 2, 43007 Tarragona, Spain
- Faculty of Chemistry, Universitat Rovira I Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Aitor Gual
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, C/Marcel·lí Domingo, 2, 43007 Tarragona, Spain
| | - Ricard Garcia-Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, C/Marcel·lí Domingo, 2, 43007 Tarragona, Spain
- Department of Chemical Engineering, Universitat Rovira I Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Adrianna Nogalska
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, C/Marcel·lí Domingo, 2, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-297-089
| |
Collapse
|
5
|
Karami Z, Khodaei MM. Post‐synthetic modification of IR-MOF‐3 as acidic-basic heterogeneous catalyst for one-pot synthesis of pyrimido[4,5-b]quinolones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Saidian S. Magnetic Nanoparticle-Supported Basic Ionic Liquid: A Reusable Phase-Transfer Catalyst for Knoevenagel Condensation in Aqueous Medium. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gholinejad M, Esmailoghli H, Khosravi F, Sansano JM. Ionic Liquid Modified Carbon Nanotube Supported Palladium Nanoparticles for Efficient Sonogashira-Hagihara Reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Nunes JCF, Almeida MR, Bento RMF, Pereira MM, Santos-Ebinuma VC, Neves MC, Freire MG, Tavares APM. Enhanced Enzyme Reuse through the Bioconjugation of L-Asparaginase and Silica-Based Supported Ionic Liquid-like Phase Materials. Molecules 2022; 27:929. [PMID: 35164193 PMCID: PMC8838661 DOI: 10.3390/molecules27030929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- João C. F. Nunes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Mafalda R. Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Rui M. F. Bento
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Matheus M. Pereira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Valéria C. Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| |
Collapse
|
9
|
Hakimi F, Salimi I, Fallah-Mehrjardi M. Sulfonated ethylenediamine functionalized magnetic nanoparticles as a highly efficient heterogeneous nanocatalyst for the green synthesis of 2,3-dihydroquinazolin-4(1H)-ones. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220127123444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
In the present study, a new magnetically recyclable nanocatalyst, Fe3O4@SiO2@(CH2)3-en-SO3H/H2SO4, was prepared through the immobilization of sulfonated ethylenediamine on the silica-coated magnetite nanoparticles. The catalyst was fully characterized by several physicochemical techniques, including FT-IR, FESEM, TEM, EDS, VSM, XRD and TGA. The resultant nanocatalyst was then utilized in the green synthesis of 2,3-dihydroquinazolin-4(1H)-ones via the cyclocondensation reaction of various aldehydes and ketones with anthranilamide in refluxed EtOH. Short reaction times, high product yields, environmentally friendly reaction conditions, simple operation and reusability of the catalyst are important features of the present procedure. The catalyst can magnetically be recycled and reused several times without notable loss in activity.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Chemistry, Payame Noor University (PNU), Tehran, 19395-3697, Iran
| | - Iman Salimi
- Department of Chemistry, Payame Noor University (PNU), Tehran, 19395-3697, Iran
| | - Mehdi Fallah-Mehrjardi
- Department of Chemistry, Payame Noor University (PNU), Tehran, 19395-3697, Iran
- Research Center of Environmental Chemistry, Payame Noor University (PNU), Ardakan, Yazd, Iran
| |
Collapse
|
10
|
Efficient Isolation of Bacterial RNAs Using Silica-Based Materials Modified with Ionic Liquids. Life (Basel) 2021; 11:life11101090. [PMID: 34685465 PMCID: PMC8536996 DOI: 10.3390/life11101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
High quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs. The investigated chloride-based SILs comprise the following cations: 1-methyl-3-propylimidazolium, triethylpropylammonium, dimethylbutylpropylammonium, and trioctylpropylammonium. All SILs were synthesized by us and characterized by solid-state 13C Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), elemental analysis, and zeta potential measurements, confirming the successful covalent attachment of each IL cation with no relevant changes in the morphology of materials. Their innovative application as chromatographic supports for the isolation of recombinant RNA was then evaluated. Adsorption kinetics of transfer RNA (tRNA) on the modified silica-based materials were investigated at 25 °C. Irrespective to the immobilized IL, the adsorption experimental data are better described by a pseudo first-order model, and maximum tRNA binding capacities of circa 16 µmol of tRNA/g of material were achieved with silica modified with 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Furthermore, the multimodal character displayed by SILs was explored towards the purification of tRNA from Escherichia coli lysates, which in addition to tRNA contain ribosomal RNA and genomic DNA. The best performance on the tRNA isolation was achieved with SILs comprising 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Overall, the IL modified silica-based materials represent a more efficient, sustainable, and cost-effective technology for the purification of bacterial RNAs, paving the way for their use in the purification of distinct biomolecules or nucleic acids from other sources.
Collapse
|
11
|
Bento RMF, Almeida CAS, Neves MC, Tavares APM, Freire MG. Advances Achieved by Ionic-Liquid-Based Materials as Alternative Supports and Purification Platforms for Proteins and Enzymes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2542. [PMID: 34684983 PMCID: PMC8538677 DOI: 10.3390/nano11102542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) have been applied in several fields in which enzymes and proteins play a noteworthy role, for instance in biorefinery, biotechnology, and pharmaceutical sciences, among others. Despite their use as solvents and co-solvents, their combination with materials for protein- and enzyme-based applications has raised significant attention in the past few years. Among them, significant advances were brought by supported ionic liquids (SILs), in which ILs are introduced to modify the surface and properties of materials, e.g., as ligands when covalently bond or when physiosorbed. SILs have been mainly investigated as alternative supports for enzymes in biocatalysis and as new supports in preparative liquid chromatography for the purification of high-value proteins and enzymes. In this manuscript, we provide an overview on the most relevant advances by using SILs as supports for enzymes and as purification platforms for a variety of proteins and enzymes. The interaction mechanisms occurring between proteins and SILs/ILs are highlighted, allowing the design of efficient processes involving SILs. The work developed is discussed in light of the respective development phase and innovation level of the applied technologies. Advantages and disadvantages are identified, as well as the missing links to pave their use in relevant applications.
Collapse
Affiliation(s)
| | | | | | | | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.F.B.); (C.A.S.A.); (M.C.N.); (A.P.M.T.)
| |
Collapse
|
12
|
Tabrizi M, Bahri-Laleh N, Sadjadi S, Nekoomanesh-Haghighi M. The effect of ionic liquid containing AlCl3 catalytic systems on the microstructure and properties of polyalphaolefin based lubricants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Abstract
The rapid separation and efficient recycling of catalysts after a catalytic reaction are considered important requirements along with the high catalytic performances. In this view, although heterogeneous catalysis is generally less efficient if compared to the homogeneous type, it is generally preferred since it benefits from the easy recovery of the catalyst. Recycling of heterogeneous catalysts using traditional methods of separation such as extraction, filtration, vacuum distillation, or centrifugation is tedious and time-consuming. They are uneconomic processes and, hence, they cannot be carried out in the industrial scale. For these limitations, today, the research is devoted to the development of new methods that allow a good separation and recycling of catalysts. The separation process should follow a procedure economically and technically feasible with a minimal loss of the solid catalyst. The aim of this work is to provide an overview about the current trends in the methods of separation/recycling used in the heterogeneous catalysis.
Collapse
|
15
|
Plumet J. 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides under "Non-Conventional" Conditions: Green Solvents, Irradiation, and Continuous Flow. Chempluschem 2021; 85:2252-2271. [PMID: 33044044 DOI: 10.1002/cplu.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Indexed: 01/15/2023]
Abstract
The 1,3-dipolar cycloaddition reactions (DCs) of nitrile oxides (NOs) to alkenes and alkynes are useful methods for the synthesis of 2-isoxazolines and isoxazoles respectively, which are important classes of heterocyclic compounds in organic and medicinal chemistry. Most of these reactions are carried out in organic solvents and under thermal activation. Nevertheless the use of supercritical carbon dioxide (scCO2 ) and ionic liquids (Ils) as alternative solvents and the application of microwave (MW) and ultrasound (US) as alternative activation procedures have evident advantages from the "Green Chemistry" point of view. The critical discussion on the applications of these "unconventional" activation methods and reaction conditions in the 1,3-DCs of NOs is the objective of the present Review.
Collapse
Affiliation(s)
- Joaquín Plumet
- Department of Organic Chemistry. Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Metal–organic frameworks (MOFs) are a valuable group of porous crystalline solids with inorganic and organic parts that can be used in dual catalysis.
Collapse
Affiliation(s)
- Kayhaneh Berijani
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
17
|
Aliyeva RV, Babashova YM, Khamiyev MJ, Bagirova SR, Azizbeyli HR. The alkylation of oil fractions rich in aromatic hydrocarbons with C6, C8 and C10 α - olefins in the presence of ionic liquids catalytic systems. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractThe article is dedicated to the development of processes for (oligo)alkylation of petroleum fractions rich in aromatic hydrocarbons, with α-olefins (hexene-1, octene-1, decene-1) in the presence of ionic-liquid catalytic systems and the study of the properties of the products obtained. Alkylation reactions were carried out in the presence of chloroaluminate ionic liquids; for the first time a (nano)metal-polymer composite (NMPC) was used in the catalytic system as a modifier, and zinc chloride (ZnCl2) was used in the catalytic system as a component and the results were compared. It has been shown that these ionic liquid catalytic systems (ILCS) are suitable for (oligo)alkylation reactions and the use of these additives in their composition will lead to efficient alkylation. The products obtained were analyzed by IR-, NMR- spectroscopy, fluorescent indicator adsorption methods, and size exclusion chromatography. It was shown that these petroleum fractions rich in aromatic hydrocarbons can be used as alkylation components, and depending on the composition of the ILCS, it is possible to regulate the molecular, thermophysical and other characteristics of the products obtained based on them. The alkylated products obtained have been tested as plasticizing additives in polyolefin composites.
Collapse
|
18
|
Effect of phosphonium ionic liquid/Pd ratio on the catalytic activity of palladium nanoparticles in Suzuki cross-coupling reaction. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Fallah-Mehrjardi M, Karimi AM, Banitaba SH. Binding of Polyethylene Glycol Imidazolium Hydrogen Sulfate to Magnetic Nanoparticles and Its Application as a Novel Recyclable Solid Acid Catalyst in the Friedländer Synthesis of Quinolines under Solvent-Free Conditions. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1786416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mehdi Fallah-Mehrjardi
- Department of Chemistry, Payame Noor University, Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University, Tehran, Iran
| | | | - Sayed Hossein Banitaba
- Department of Chemistry, Payame Noor University, Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
20
|
Abstract
The proline-catalysed asymmetric aldol reaction is usually carried out in highly dipolar aprotic solvents (dimethylsulfoxide, dimethylformamide, acetonitrile) where proline presents an acceptable solubility. Protic solvents are generally characterized by poor stereocontrol (e.g., methanol) or poor reactivity (e.g., water). Here, we report that water/methanol mixtures are exceptionally simple and effective reaction media for the intermolecular organocatalytic aldol reaction using the simple proline as the catalyst.
Collapse
|
21
|
Synthesis, characterization and catalytic application of tributyl(carboxymethyl)phosphonium bromotrichloroferrate as a new magnetic ionic liquid for the preparation of 2,3-dihydroquinazolin-4(1H)-ones and 4H-pyrimidobenzothiazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04183-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Garkoti C, Shabir J, Mozumdar S. Amine‐Terminated Ionic Liquid Modified Magnetic Graphene Oxide (MGO‐IL‐NH
2
): A Highly Efficient and Reusable Nanocatalyst for the Synthesis of 3‐Amino Alkylated Indoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202000336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Charu Garkoti
- Department of ChemistryUniversity of Delhi Delhi India - 110007
| | - Javaid Shabir
- Department of ChemistryUniversity of Delhi Delhi India - 110007
| | - Subho Mozumdar
- Department of ChemistryUniversity of Delhi Delhi India - 110007
| |
Collapse
|
23
|
Askari S, Jafarzadeh M, Christensen DB, Kegnæs S. A Synergic Activity of Urea/Butyl Imidazolium Ionic Liquid Supported on UiO-66-NH2 Metal–Organic Framework for Synthesis of Oximes. Catal Letters 2020. [DOI: 10.1007/s10562-020-03203-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Valdebenito C, Pinto J, Nazarkovsky M, Chacón G, Martínez-Ferraté O, Wrighton-Araneda K, Cortés-Arriagada D, Camarada MB, Alves Fernandes J, Abarca G. Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles. NANOSCALE ADVANCES 2020; 2:1325-1332. [PMID: 36133065 PMCID: PMC9418861 DOI: 10.1039/d0na00055h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 02/09/2020] [Indexed: 05/15/2023]
Abstract
A series of new triazolium-based supported ionic liquids (SILPs), decorated with Cu NPs, were successfully prepared and applied to the N-arylation of aryl halides with anilines. The triazoles moieties were functionalised using copper-catalysed azide-alkyne cycloaddition. SILP surface characterisation showed a strong correlation between the triazolium cation volume and textural properties. STEM images showed well-dispersed Cu NPs on SILPs with a mean diameter varying from 3.6 to 4.6 nm depending on the triazolium cation used. Besides, XPS results suggest that the Cu(0)/Cu(i) ratio can be modulated by the electronic density of triazolium substituents. XPS and computational analysis gave mechanistic insights into the Cu NP stabilisation pathways, where the presence of electron-rich groups attached to a triazolium ring plays a critical role in leading to a cation adsorption pathway (E ads = 72 kcal mol-1). In contrast, less electron-rich groups favour the anion adsorption pathway (E ads = 63 kcal mol-1). The Cu@SILP composite with electron-rich groups showed the highest activity for the C-N Ullmann coupling reaction, which suggests that electron-rich groups might act as an electron-like reservoir to facilitate oxidative addition for N-arylation. This strategy firmly suggests the strong dependence of the nature of triazolium-based SILPs on the Cu NP surface active sites, which may provide a new environment to confine and stabilise MNPs for catalytic applications.
Collapse
Affiliation(s)
- Cristián Valdebenito
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| | - Jose Pinto
- School of Chemistry, University of Nottingham NG7 2RD Nottingham UK
| | - Michael Nazarkovsky
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro R. Marquês de São Vicente 225 Rio de Janeiro 22451-900 RJ Brazil
| | - Gustavo Chacón
- Instituto de Química, Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Oriol Martínez-Ferraté
- Instituto de Química, Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Kerry Wrighton-Araneda
- Programa Institucional de Fomento a la Investigación, Universidad Tecnológica Metropolitana Desarrollo e Innovación Ignacio Valdivieso 2409, P.O. Box San Joaquín Santiago Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Universidad Tecnológica Metropolitana Desarrollo e Innovación Ignacio Valdivieso 2409, P.O. Box San Joaquín Santiago Chile
| | - María Belén Camarada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| | | | - Gabriel Abarca
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| |
Collapse
|
25
|
Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121036. [PMID: 31473516 DOI: 10.1016/j.jhazmat.2019.121036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The role of natural gas in mitigating greenhouse gas emissions and advancing renewable energy resource integration is undoubtedly critical. With the progress of hydrocarbons exploration and production, the target zones become deeper and the possibility of mercury contamination increases. This impacts on the industry from health and safety risks, due to corrosion and contamination of equipment, to catalyst poisoning and toxicity through emissions to the environment. Especially mercury embrittlement, being a significant problem in LNG plants using aluminum cryogenic heat exchangers, has led to catastrophic plant incidents worldwide. The aim of this review is to critically discuss the conventional and alternative materials as well as the processes employed for mercury removal during gas processing. Moreover, comments on studies examining the geological occurrence of mercury species are included, the latest developments regarding the detection, sampling and measurement are presented and updated information with respect to mercury speciation and solubility is displayed. Clean up and passivation techniques as well as disposal methods for mercury-containing waste are also explained. Most importantly, the environmental as well as the health and safety implications are addressed, and areas that require further research are pinpointed.
Collapse
Affiliation(s)
- Anastasios Chalkidis
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Deshetti Jampaiah
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Patrick G Hartley
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Ylias M Sabri
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
26
|
Naikwade A, Jagadale M, Kale D, Rashinkar G. Magnetic Nanoparticle Supported Ionic Liquid Phase Catalyst for Oxidation of Alcohols. Aust J Chem 2020. [DOI: 10.1071/ch19627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new magnetic nanoparticle supported ionic liquid phase (SILP) catalyst containing perruthenate anions was prepared by a multistep procedure. The various analytical techniques such as FT-IR spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetric analysis, energy dispersive X-ray analysis, and vibrating sample magnetometer analysis ascertained the successful formation of catalyst. The performance of a magnetically retrievable SILP catalyst was evaluated in the selective oxidation of alcohols. The split test and leaching studies of the SILP catalyst confirmed its heterogeneous nature. In addition, the reusability potential of SILP catalyst was also investigated which revealed its robust activity up to six consecutive cycles.
Collapse
|
27
|
Zarei A, Yarie M, Zolfigol MA, Niknam K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azra Zarei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr Iran
| |
Collapse
|
28
|
Mondal P, Chatterjee S, Sarkar P, Bhaumik A, Mukhopadhyay C. Preparation of DABCO‐Based Acidic‐Ionic‐Liquid‐Supported ZnO Nanoparticles and Their Application for Ecofriendly Synthesis of
N
‐Aryl Polyhydroquinoline Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Priya Mondal
- Department of ChemistryUniversity of Calcutta 92 APC Road Kolkata- 700009 India
| | - Sauvik Chatterjee
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | - Piyali Sarkar
- Department of ChemistryUniversity of Calcutta 92 APC Road Kolkata- 700009 India
| | - Asim Bhaumik
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | | |
Collapse
|
29
|
Calabrese C, Fusaro L, Liotta LF, Giacalone F, Comès A, Campisciano V, Aprile C, Gruttadauria M. Efficient Conversion of Carbon Dioxide by Imidazolium‐Based Cross‐Linked Nanostructures Containing Polyhedral Oligomeric Silsesquioxane (POSS) Building Blocks. Chempluschem 2019; 84:1536-1543. [DOI: 10.1002/cplu.201900408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Carla Calabrese
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| | - Luca Fusaro
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR via Ugo La Malfa 153 90146 Palermo Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Adrien Comès
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| | - Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Carmela Aprile
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
30
|
Calabrese C, Campisciano V, Siragusa F, Liotta LF, Aprile C, Gruttadauria M, Giacalone F. SBA‐15/POSS‐Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support in the Stabilization of Palladium Species for C−C Cross Coupling Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Carla Calabrese
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| | - Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Fabiana Siragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Leonarda F. Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR Via Ugo La Malfa 153 90146 Palermo Italy
| | - Carmela Aprile
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
31
|
Campisciano V, Calabrese C, Liotta LF, La Parola V, Spinella A, Aprile C, Gruttadauria M, Giacalone F. Templating effect of carbon nanoforms on highly cross‐linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università degli Studi di Palermo V.le delle Scienze Ed. 17 90128 Palermo Italy
| | - Carla Calabrese
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università degli Studi di Palermo V.le delle Scienze Ed. 17 90128 Palermo Italy
- Laboratory of Applied Material Chemistry (CMA)University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN‐CNR Via Ugo La Malfa 153 90146 Palermo Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN‐CNR Via Ugo La Malfa 153 90146 Palermo Italy
| | - Alberto Spinella
- Centro Grandi Apparecchiature‐ATeN CenterUniversità degli Studi di Palermo Via F. Marini 14 90128 Palermo Italy
| | - Carmela Aprile
- Laboratory of Applied Material Chemistry (CMA)University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università degli Studi di Palermo V.le delle Scienze Ed. 17 90128 Palermo Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università degli Studi di Palermo V.le delle Scienze Ed. 17 90128 Palermo Italy
| |
Collapse
|
32
|
Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hazi Ahmad Beejapur
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kecheng Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
33
|
Xie G, Wei S, Zhang L, Ma X. Hollow Mesoporous Organic Polymeric Nanobowls and Nanospheres: Shell Thickness and Mesopore-Dependent Catalytic Performance in Sulfonation, Immobilization of Organocatalyst, and Enantioselective Organocascade. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guangxin Xie
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shuai Wei
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
34
|
Kadotani S, Nokami T, Itoh T. Enhanced activity and modified substrate-favoritism of Burkholderia cepacia lipase by the treatment with a pyridinium alkyl-PEG sulfate ionic liquid. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis. Catalysts 2018. [DOI: 10.3390/catal8120617] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mesoporous silica sieves are among the most studied nano-objects due to their stable pore structure and easy preparation. In particular, MCM-41 have attracted increasing research attention due to their chemical versatility. This review focuses on the synthesis and regioselective functionalization of MCM-41 to prepare catalytic systems. The topics covered are: mono and di-functionalized MCM-41 as basic and acid catalysts, catalysts based on metallic complexes and heteropolyacids supported onto MCM-41, metallic nanoparticles embed onto functionalized MCM-41 and magnetic MCM-41 for catalytic purposes.
Collapse
|
36
|
Franconetti A, de Gonzalo G. Recent Developments on Supported Hydrogen-bond Organocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201801459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonio Franconetti
- Departamento de Química; Universitat Autonoma de Barcelona; Cerdanyola del Vallés 01893 Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica; Universidad de Sevilla; c/ Profesor García González 2 41012 Sevilla Spain
| |
Collapse
|
37
|
Ghorbani-Choghamarani A, Taherinia Z, Nikoorazm M. Ionic liquid supported on magnetic nanoparticles as a novel reusable nanocatalyst for the efficient synthesis of tetracyclic quinazoline compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3510-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Campisciano V, Salvo AMP, Liotta LF, Spinella A, Giacalone F, Gruttadauria M. Cross-Linked Polyamine from Imidazolium-Based Materials: A Simple Route to Useful Catalytic Materials. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincenzo Campisciano
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Anna Maria Pia Salvo
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR; Via Ugo La Malfa 153 90146 Palermo Italy
| | - Alberto Spinella
- Centro Grandi Apparecchiature-ATeN Center; Università degli Studi di Palermo; Via F. Marini 14 90128 Palermo Italy
| | - Francesco Giacalone
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
39
|
Koga H, Nogi M, Isogai A. Ionic Liquid Mediated Dispersion and Support of Functional Molecules on Cellulose Fibers for Stimuli-Responsive Chromic Paper Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40914-40920. [PMID: 29111652 DOI: 10.1021/acsami.7b14827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional molecules play a significant role in the development of high-performance composite materials. Functional molecules should be well dispersed (ideally dissolved) and supported within an easy-to-handle substrate to take full advantage of their functionality and ensure easy handling. However, simultaneously achieving the dissolution and support of functional molecules remains a challenge. Herein, we propose the combination of a nonvolatile ionic liquid and an easy-to-handle cellulose paper substrate for achieving this goal. First, the photochromic molecule, i.e., diarylethene, was dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim]NTf2). Then, diarylethene/[bmim]NTf2 was supported on cellulose fibers within the paper, through hydrogen bonding between [bmim] cations of the ionic liquid and the abundant hydroxyl groups of cellulose. The as-prepared paper composites exhibited reversible, rapid, uniform, and vivid coloration and bleaching upon ultraviolet and visible light irradiation. The photochromic performance was superior to that of the paper prepared in the absence of [bmim]NTf2. This concept could be applied to other functional molecules. For example, lithium perchlorate/[bmim] tetrafluoroborate supported within cellulose paper acted as a flexible electrolyte to provide a paper-based electrochromic device. These findings are expected to further the development of composite materials with high functionality and practicality.
Collapse
Affiliation(s)
- Hirotaka Koga
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masaya Nogi
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Akira Isogai
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|