1
|
Wegener D, Pérez-Bitrián A, Limberg N, Wiesner A, Hoffmann KF, Riedel S. A Highly Sterically Encumbered Boron Lewis Acid Enabled by an Organotellurium-Based Ligand. Chemistry 2024; 30:e202401231. [PMID: 38625061 DOI: 10.1002/chem.202401231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Lewis acidic boron compounds are ubiquitous in chemistry due to their numerous applications, yet tuning and optimizing their properties towards different purposes is still a challenging field of research. In this work, the boron-based Lewis acid B[OTeF3(C6F5)2]3 was synthesized by reaction of the teflate derivative HOTeF3(C6F5)2 with BCl3 or BCl3 ⋅ SMe2. This new compound presents a remarkably high thermal stability up to 300 °C, as well as one of the most sterically encumbered boron centres known in the literature. Theoretical and experimental methods revealed that B[OTeF3(C6F5)2]3 exhibits a comparable Lewis acidity to that of the well-known B(C6F5)3. The affinity of B[OTeF3(C6F5)2]3 towards pyridine was accessed by Isothermal Titration Calorimetry (ITC) and compared to that of B(OTeF5)3 and B(C6F5)3. The ligand-transfer reactivity of this new boron compound towards different fluorides was demonstrated by the formation of an anionic Au(III) complex and a hypervalent iodine(III) species.
Collapse
Affiliation(s)
- Daniel Wegener
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Alberto Pérez-Bitrián
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
- Current address: Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Kurt F Hoffmann
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| |
Collapse
|
2
|
Zhang ZF, Su MD. Understanding the CO capture reaction through electronic structure analysis of four-membered-ring group-13/N- and B/group-15-based Lewis acid-base pairs. RSC Adv 2024; 14:19446-19458. [PMID: 38919374 PMCID: PMC11197930 DOI: 10.1039/d4ra03568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University Chiayi 60004 Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University Chiayi 60004 Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
3
|
Jing R, Lu X, Wang J, Xiong J, Qiao Y, Zhang R, Yu Z. CeO 2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310926. [PMID: 38239093 DOI: 10.1002/smll.202310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Indexed: 06/27/2024]
Abstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Collapse
Affiliation(s)
- Run Jing
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
4
|
Ferrer M, Alkorta I, Elguero J, Oliva-Enrich JM. A multi-FLP approach for CO 2 capture: investigating nitrogen, boron, phosphorus and aluminium doped nanographenes and the influence of a sodium cation. Phys Chem Chem Phys 2024; 26:12433-12443. [PMID: 38596872 DOI: 10.1039/d4cp00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The reactivity of B3N3-doped hexa-cata-hexabenzocoronene (B3N3-NG), Al3N3-NG, B3P3-NG and Al3P3-NG, models of doped nanographenes (NGs), towards carbon dioxide was studied with density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G* level of theory. The NG systems exhibit a poly-cyclic poly-frustrated Lewis pair (FLP) nature, featuring multiple Lewis acid/Lewis base pairs on their surface enabling the capture of several CO2 molecules. The capture of CO2 by these systems was investigated within two scenarios: (A) sequential capture of up to three CO2 molecules and (B) capture of CO2 molecules in the presence of a sodium cation. The resulting adducts were analyzed in terms of the activation barriers and relative stabilities. The presence of aluminium atoms changes the asynchrony of the reaction favoring the aluminium-oxygen bond and influences the regioselectivity of the multi-capture. A cooperative effect is predicted due to π-electron delocalization, with the sodium cation stabilizing the stationary points and favoring the addition of CO2 to the NGs.
Collapse
Affiliation(s)
- Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
- PhD Program in Theoretical Chemistry and Computational Modeling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - Josep M Oliva-Enrich
- Instituto de Química-Física Blas Cabrera (CSIC), Serrano, 119, E-28006 Madrid, Spain
| |
Collapse
|
5
|
Frenette BL, Rivard E. Frustrated Lewis Pair Chelation in the p-Block. Chemistry 2023; 29:e202302332. [PMID: 37677126 DOI: 10.1002/chem.202302332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Frustrated Lewis pairs (FLPs) have been the subject of considerable study since the field's inception. While much of the research into FLPs has centered around small molecule activation for diverse stoichiometric and catalytic transformations, intramolecular FLPs also show promise as chelating ligands. The cooperative action of Lewis basic and acidic moieties enables intramolecular FLPs to stabilize low oxidation state centers and (consequently) reactive molecular fragments through a donor-acceptor approach, making them an attractive ligand class in main group element chemistry. This review outlines the state of FLP chelation to date throughout the p-block, encompassing primarily groups 13-16.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
6
|
Wang M, Shanmugam M, McInnes EJL, Shaver MP. Light-Induced Polymeric Frustrated Radical Pairs as Building Blocks for Materials and Photocatalysts. J Am Chem Soc 2023; 145:24294-24301. [PMID: 37890166 PMCID: PMC10636756 DOI: 10.1021/jacs.3c09075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Polymeric frustrated Lewis pairs, or poly(FLP)s, have served to bridge the gap between functional polymer science and main group catalysis, pairing the uniqueness of sterically frustrated Lewis acids and bases with a polymer scaffold to create self-healing gels and recyclable catalysts. However, their utilization in radical chemistry is unprecedented. In this paper, we disclose the synthesis of polymeric frustrated radical pairs, or poly(FRP)s, by in situ photoinduction of FLP moieties, where their Lewis acidic and basic centers are tuned to promote single electron transfer (SET). Through systematic manipulation of the chemical structure, we demonstrate that inclusion of ortho-methyl groups on phosphine monomers is crucial to enable SET. The generation of radicals is evidenced by monitoring the stable polymeric phosphine radical cations via UV/vis and EPR spectroscopy. These new poly(FRP)s enable both catalytic hydrogenation and radical-mediated photocatalytic perfluoroalkylations. These polymeric radical systems open new avenues to design novel functional polymers for catalysis and photoelectrical chemistry.
Collapse
Affiliation(s)
- Meng Wang
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Muralidharan Shanmugam
- Photon
Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Photon
Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Pérez-Jiménez M, Corona H, de la Cruz-Martínez F, Campos J. Donor-Acceptor Activation of Carbon Dioxide. Chemistry 2023; 29:e202301428. [PMID: 37494303 DOI: 10.1002/chem.202301428] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
The activation and functionalization of carbon dioxide entails great interest related to its abundance, low toxicity and associated environmental problems. However, the inertness of CO2 has posed a challenge towards its efficient conversion to added-value products. In this review we discuss one of the strategies that have been widely used to capture and activate carbon dioxide, namely the use of donor-acceptor interactions by partnering a Lewis acidic and a Lewis basic fragment. This type of CO2 activation resembles that found in metalloenzymes, whose outstanding performance in catalytically transforming carbon dioxide encourages further bioinspired research. We have divided this review into three general sections based on the nature of the active sites: metal-free examples (mainly formed by frustrated Lewis pairs), main group-transition metal combinations, and transition metal heterobimetallic complexes. Overall, we discuss one hundred compounds that cooperatively activate carbon dioxide by donor-acceptor interactions, revealing a wide range of structural motifs.
Collapse
Affiliation(s)
- Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Helena Corona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Felipe de la Cruz-Martínez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
8
|
Zhang ZF, Su MD. Reactivity of the Intramolecular Vicinal Group-13/P- and B/Group-15-Based Frustrate Lewis Pairs with Sulfur Dioxide: Mechanistic Insight from DFT. Inorg Chem 2023; 62:13315-13327. [PMID: 37549232 DOI: 10.1021/acs.inorgchem.3c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The emission of SO2 gas by industrialized societies contributes to the occurrence of acid rain in natural environments. In this study, we put forward a theoretical investigation into the capture reactions of SO2. Our analysis centers on the energy profiles of intramolecular 1,2-cyclohexylene-bridged FLP-associated molecules. We will particularly examine the reactions involving G13/P-based (with G13 denoting Group 13 element) and B/G15-based (with G15 representing Group 15 element) FLP-associated molecules. Except for Tl/P-FLP, B/N-FLP, and B/Bi-FLP, our theoretical examinations indicate that the remaining six FLP-associated molecules, namely G13'/P-FLP (G13' = B, Al, Ga, and In) and B/G15 ' -FLP (G15' = P, As, and Sb), can easily undergo SO2 capture reactions due to their energetic feasibility. Particularly, our theoretical findings suggested that 1,2-cyclohexylene-bridged Al/P-FLP, Ga/P-FLP, B/As-FLP, and B/Sb-FLP are capable of undergoing a reversible reaction and returning to the initial reactant state. Our theoretical evidence indicates that the G13-G15 bond length in the 1,2-cyclohexylene-linked G13/G15-FLP can serve as a basis for evaluating the free activation barrier associated with its reaction with SO2. Two theoretical methods, namely, the frontier molecular orbital theory and the energy decomposition analysis-natural orbitals of chemical valence approach, are utilized to investigate the electronic structure and bonding nature of the reactions under consideration. Moreover, the analyses based on the activation strain model revealed that it is the geometrical deformation energies of G13/G15-FLP, which is the key factor that greatly influences the activation barriers of such SO2 capture reactions. Further, our theoretical computations indicate that such capturing reactions of SO2 by intramolecular 1,2-cyclohexylene-linked G13/G15-based FLP-type molecules obey the Hammond postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Vashisth K, Dutta S, Akram MO, Martin CD. Examining the reactivity of tris( ortho-carboranyl)borane with Lewis bases and application in frustrated Lewis pair Si-H bond cleavage. Dalton Trans 2023. [PMID: 37377440 DOI: 10.1039/d3dt01557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Reactions of tris(ortho-carboranyl)borane with Lewis bases reveals only small bases bind. The tremendous bulk and Lewis acidity is leveraged in frustrated Lewis pair Si-H cleavage with a wider range of Lewis bases and greater efficacy than B(C6F5)3.
Collapse
Affiliation(s)
- Kanika Vashisth
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Sanjay Dutta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Manjur O Akram
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| |
Collapse
|
10
|
Zhang ZF, Su MD. Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde. Phys Chem Chem Phys 2023; 25:7423-7435. [PMID: 36847783 DOI: 10.1039/d2cp05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan. .,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Song Y, He J, Zhang Y, Gilsdorf RA, Chen EYX. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat Chem 2023; 15:366-376. [PMID: 36443531 DOI: 10.1038/s41557-022-01097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China.
| | - Reid A Gilsdorf
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Zhang ZF, Su MD. Insights into the Reactivity of the Ring-Opening Reaction of Tetrahydrofuran by Intramolecular Group-13/P- and Al/Group-15-Based Frustrated Lewis Pairs. ACS OMEGA 2023; 8:5316-5331. [PMID: 36816703 PMCID: PMC9933199 DOI: 10.1021/acsomega.2c06194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A theoretical study concerning key factors affecting activation energies for ring-opening reactions of tetrahydrofuran (THF) by G13/P-based (G13 = B, Al, Ga, In, and Tl) and Al/G15-based (G15 = N, P, As, Sb, and Bi) frustrated Lewis pairs (FLPs) featuring the dimethylxanthene scaffold was performed using density functional theory. Our theoretical findings indicate that only dimethylxanthene backbone Al/P-Rea (Rea = reactant) FLP-type molecules can be energetically favorable to undergo the ring-opening reaction with THF. Our theoretical evidence reveals that the shorter the separating distance between Lewis acidic (LA) and Lewis basic (LB) centers of the dimethylxanthene backbone FLP-type molecules, the greater the orbital overlaps between the FLP and THF and the lower the activation barrier for such a ring-opening reaction. Energy decomposition analysis (EDA) evidence suggests that the bonding interaction for such a ring-opening reaction is predominated by the donor-acceptor interaction (singlet-singlet interaction) compared to the electron-sharing interaction (triplet-triplet interaction). In addition, the natural orbitals for chemical valence (NOCV) evidence demonstrate that the bonding situations of such ring-opening reactions can be best described as FLP-to-THF forward bonding (the lone pair (G15) → the empty σ*(C-O)) and THF-to-FLP back bonding (the empty σ*(G13) ← filled p-π(O)). The EDA-NOCV observations show that the former plays a predominant role and the latter plays a minor role in such bonding conditions. The activation strain model reveals that the deformation energy of THF is the key factor in determining the activation energy of their ring-opening reactions. Comparing the geometrical structures of the transition states with their corresponding reactants, a linear relationship between them can be rationally explained by the Hammond postulate combined with the respective activation barriers calculated in this work.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department
of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
| | - Ming-Der Su
- Department
of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung80708, Taiwan
| |
Collapse
|
13
|
Reactivity of a model of B 3P 3-doped nanographene with up to three CO 2 molecules. Sci Rep 2023; 13:2407. [PMID: 36765069 PMCID: PMC9918725 DOI: 10.1038/s41598-023-29336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The reactivity of a B3P3-doped hexa-cata-hexabenzocoronene, as a model of nanographene (B3P3-NG), towards carbon dioxide was studied at the DFT M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G* level of theory. This compound can be classified as a poly-cyclic poly-Frustrated Lewis Pair (FLP) system, as it presents more than one Lewis Acid/Lewis Base pair on its surface, making the capture of several carbon dioxide molecules possible. Two scenarios were considered to fully characterize the capture of CO2 by this multi-FLP system: (i) fixation of three CO2 molecules sequentially one by one; and (ii) simultaneous contact of three CO2 molecules with the B3P3-NG surface. The resulting adducts were analyzed as function of activation barriers and the relative stability of the CO2 capture. A cooperativity effect due to the π-delocalization of the hexa-cata-hexabenzocoronene is observed. The fixation of a CO2 molecule modifies the electronic properties. It enhances the capture of additional CO2 molecules by changing the acidy and basicity of the rest of the boron and phosphorus atoms in the B3P3-NG system.
Collapse
|
14
|
Zhang ZF, Su MD. Influence of the Element and Substituent Effects on the Reactivity of Catching Reactions of Difluorocarbene by Benzene-Bridged and Group-13/Group-15-Based Frustrated Lewis Pairs. Inorg Chem 2023; 62:1018-1031. [PMID: 36604303 DOI: 10.1021/acs.inorgchem.2c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The trapping reactions of CF2 by benzene-bridged Group-13/P-based and B/Group-15-based frustrated Lewis pairs (FLPs) have been computationally investigated based on density functional theory. Interestingly, our theoretical calculations predict that the capture of CF2 by all five Group-13/P-based FLPs is energetically feasible. However, in the B/Group-15-based FLPs, only the phosphorus-based B/P-FLP can trap CF2 from kinetic and thermodynamical viewpoints. According to the analyses of the activation strain model, it can be known that the atomic radius of the G15 element (Lewis base) of benzene-bridged B/Group-15-FLP plays an important role in controlling the reactivity of the CF2 catching reactions, whereas the atomic radius of the Group-13 center (Lewis acid) does not play a role in influencing the activation barrier of these CF2 catching reactions. Our theoretical findings based on sophisticated methods suggest that the forward bonding is the FLP-to-CF2 interaction, the LP (Group-15-donor) → vacant p-π-orbital (CF2), which was quantitatively proved to be strong in such present CF2 catching reactions. However, the back bonding is the CF2-to-FLP interaction, the empty σ-orbital (Group-13-acceptor) ← sp2-σ-orbital (CF2), which was verified to be relatively weak. Our theoretical pieces of evidence reveal that the stronger electron-donating ability of the substituents is attached to the Lewis basic center and can make the reaction barrier of the benzene-bridged Group-13/Group-15-based FLP-related compound catching CF2 smaller and more exothermic.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung80708, Taiwan
| |
Collapse
|
15
|
Zhang ZF, Su MD. Theoretical Study of Reaction Mechanisms of Carbon Dioxide with E–CH 2–Z-Type Frustrated Lewis Pairs (E = C–Pb; Z = N–Bi). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung80708, Taiwan
| |
Collapse
|
16
|
Zhang ZF, Su MD. The reactivity of the trapping reaction of the benzene-bridged boron/phosphorus-based frustrated Lewis pair with difluorocarbene and its group 14 analogs: A theoretical investigation. J Comput Chem 2022; 43:1783-1792. [PMID: 36063085 DOI: 10.1002/jcc.26980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/07/2022]
Abstract
The trapping reactions of carbene analogs G14F2 (G14 = group 14 element) by the benzene-bridged B/P-Rea frustrated Lewis pair (FLPs) molecule are studied using density functional theory (B3LYP-D3(BJ)/def2-TZVP). Our theoretical investigations predict that only the CF2 intermediate rather than other heavy carbene analogs can be trapped by the B/P-Rea FLP-type molecule. Energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analyses indicate that the bonding nature of the G14F2 catching reactions by the B/P-Rea FLP-type molecule is a donor-acceptor (singlet-singlet) interaction rather than an electron-sharing (triplet-triplet) interaction. Moreover, EDA-NOCV and frontier molecular orbital (FMO) theory findings strongly suggest that the lone pair (LP) (P) → vacant p-π-orbital (G14F2 ) interaction rather than the empty σ-orbital (B) ← sp2 -σ-orbital (G14F2 ) interaction plays a predominant role in establishing its bonding condition during the G14F2 trapping reaction with the B/P-Rea FLP-associated molecule. Our activation strain model findings reveal that the atomic radius of the G14 element of G14F2 plays a key role in determining the activation barrier of the G14F2 trapping reactions by the benzene-bridged B/P-Rea FLP. The valence bond state correlation diagram (VBSCD) model developed by Shaik is used to rationalize the calculated results. The VBSCD findings demonstrate that in the present trapping reactions, the singlet triplet splitting of G14F2 plays a significant role in influencing its reaction barrier and reaction enthalpy. Our theoretical results demonstrate that the relationship between the geometrical parameters of the transition states and the corresponding reaction free energy barriers agrees well with the findings based on the Hammond postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Zhang ZF, Su MD. Theoretical Study of the Activation Reaction of a Zr +/P-Based Frustrated Lewis Pair with Carbon Dioxide. J Phys Chem A 2022; 126:5534-5544. [PMID: 35960144 DOI: 10.1021/acs.jpca.2c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combination reactions of carbon dioxide with a Zr+/P-based frustrated Lewis pair (FLP) were computationally explored within the density functional theory framework [B3LYP-D3(BJ)/def2-TZVP]. Results showed that these reactions are exothermic, associated with relatively low activation barriers, and proceed concertedly involving Zr+-O and P-C chemical bond formations. Theoretical analysis revealed that the shorter the Zr+···P bond length of the Zr+/P-based FLP, the shorter the stretching O-C bond length of CO2 upon reaction, the larger the ∠OCO bending angle of CO2, the smaller the deformation energy of CO2, the lower the barrier height, and the greater the reactivity between the Zr+/P-based FLP and CO2. According to the energy decomposition analysis-natural orbitals for chemical valence, the bonding natures of their associated transition states are determined by the singlet-singlet interaction (donor-acceptor interaction), not the triplet-triplet interaction (electron-sharing interaction). Moreover, the bonding characteristics between Zr+/P-based FLPs and CO2 are established predominantly by the lone pair orbital(P) → the empty p-π* orbital (CO2) interaction, not the empty d-orbital(Zr+) ← the filled p-π orbital (CO2) interaction. With the use of the activation strain model, theoretical examinations showed that the reactivity trend of such combination reactions is mainly attributed to the deformation energies of the deformed reactants. The relationship between deformed geometrical structures and related activation energies is in good agreement with Hammond's postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Yang MC, Zhang ZF, Su MD. Understanding the Reactivity of Combination Reactions of Intramolecular Geminal Group 13 Element/Phosphorus and Gallium/Group 15 Element Frustrated Lewis Pairs with CS 2. Inorg Chem 2022; 61:12959-12976. [PMID: 35930703 DOI: 10.1021/acs.inorgchem.2c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of CS2 captured by intramolecular geminal G13/P-based (G13 = group 13 elements) and Ga/G15-based (G15 = group 15 elements) frustrated Lewis pairs have been theoretically examined by using density functional theory (DFT) computations. With regard to the nine FLP-related compounds, our DFT calculated results reveal that only Al/P-Rea and Ga/P-Rea can kinetically and thermodynamically precede the energetically feasible combination reactions with CS2 to form the five-membered heterocyclic adducts. Our activation strain model analyses on the nine aforementioned model molecules indicate that the atomic radius of the Lewis acceptor (G13) and the Lewis donor (G15) plays a role in controlling their barrier heights to obtain good orbital overlaps among G13/P-Rea, Ga/G15-Rea, and CS2. Our theoretical observations based on the energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) approach strongly indicate that the donor-acceptor bonding (i.e., singlet-singlet bonding) rather than the electron-sharing bonding (i.e., triplet-triplet bonding) plays a central role in determining the bonding conditions of the transition states, G13/P-TS and Ga/G15-TS. In addition, the theoretical evidence obtained by the frontier molecular orbital theory and EDA-NOCV analyses reveals that the best description for the bonding natures of the combination reactions of intramolecular geminal G13/P-Rea and Ga/G15-Rea with CS2 is the lone pair(G15) → p-π*(C) interaction rather than the p-π*(G13) ← p-π(S) interaction. Moreover, our present DFT computations concerning the calculated structures and corresponding relative energetics of the stationary points connected with the aforementioned sophisticated approaches are in accordance with the Hammond postulate.
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Esarte Palomero O, Jones RA. Ferrocene tethered boramidinate frustrated Lewis pairs: stepwise capture of CO 2 and CO. Dalton Trans 2022; 51:6275-6284. [PMID: 35379999 DOI: 10.1039/d2dt00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and reactivity of novel ferrocene tethered boramidinate frustrated Lewis pairs (FLPs), capable of the sequential capture of small molecules, is reported. Reactions of 1,1'-dicarbodiimidoferrocenes with different boranes provides access to metallocene tethered FLPs. The reactivity of the boramidinate moieties can be tuned by the nature of the carbodiimido substituents (alkyl vs. aryl) and the borane used in the reduction (9-borabicyclo[3.3.1]nonane [(C8H14)2BH]2vs. bis-pentafluorophenyl borane [(C6F5)2BH]2). The boramidinate FLP arms do not engage in intramolecular reactions, allowing for independent small molecule capture by each FLP. By careful synthetic control, sequential capture of different gaseous small molecules (CO2 and CO or CO2 and CNtBu) by the same bis(boramidinate)ferrocene molecule has been demonstrated.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Chemistry - The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA.
| | - Richard A Jones
- Department of Chemistry - The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA.
| |
Collapse
|
20
|
Yang MC, Zhang ZF, Su MD. Insights into the Factors Controlling the H–H Bond Cleavage Reactions by Five-Membered G13/P (G13 = Group 13 Element) and B/G15 (G15 = Group 15 Element) Frustrated Lewis Pairs. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Li C, Manick AD, Dutasta JP, Chatelet B, Martinez A, Bugaut X. Frustrated Behavior of Lewis/Brønsted Pairs inside Molecular Cages. Org Chem Front 2022. [DOI: 10.1039/d2qo00011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different endohedrally functionalized cages were designed to investigate the effects of the size and shape of molecular cavities on the frustrated behavior of Lewis/Brønsted acid-base pairs and on catalytic activities....
Collapse
|
22
|
Malär AA, Sun Q, Zehnder J, Kehr G, Erker G, Wiegand T. Proton-phosphorous connectivities revealed by high-resolution proton-detected solid-state NMR. Phys Chem Chem Phys 2022; 24:7768-7778. [DOI: 10.1039/d2cp00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-detected solid-state NMR enables atomic-level insight in solid-state reactions, for instance in heterogeneous catalysis, which is fundamental for deciphering chemical reaction mechanisms. We herein introduce a phosphorus-31 radiofrequency channel in...
Collapse
|
23
|
Zhang ZF, Yang MC, Su MD. Significant Insight into the Origin of Reaction Barriers Determining Dihydrogen Activation by G13-P-P (G13 = Group 13 Element) and G15-P-Ga (G15 = Group 15 Element) Frustrated Lewis Pairs. Inorg Chem 2021; 60:15253-15269. [PMID: 34570484 DOI: 10.1021/acs.inorgchem.1c01809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterolytic cleavage of H2 by multiply bonded phosphorus-bridged G13-P-P-Rea (G13 = B, Al, Ga, In, and Tl) and G15-P-Ga-Rea (G15 = N, P, As, Sb, and Bi) frustrated Lewis pairs (FLPs) has been theoretically investigated using density functional theory calculations. For the above nine FLP-type molecules, our theoretical findings suggest that only Al-P-P-Rea, Ga-P-P-Rea, and In-P-P-Rea can undergo the energetically feasible H2 activation reaction from kinetic and thermodynamic viewpoints. Our study based on the activation strain model (ASM) reveals that gaining a better orbital overlap between G13-P-P-Rea and G15-P-Ga-Rea molecules and H2 affected the reaction barriers through the atomic radius of G13 and G15. According to our energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) results, the bonding of these H2 activation reactions involving G13-P-P-Rea and G15-P-Ga-Rea is dominated by the donor-acceptor interaction (singlet-singlet interaction) rather than the electron-sharing interaction (triplet-triplet interaction). Moreover, our EDA-NOCV evidence reveals that the best description for the above bonding situations is the lone pair(G15) → σ*(H2) interaction rather than the empty p-π-orbital(G13) ← σ(H2) interaction. In particular, the findings in this work based on theoretically calculated geometries and the corresponding relative free energies of the stationary points combined with the results from the above sophisticated methods nicely agree with the famous Hammond postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
24
|
Škoch K, Daniliuc CG, Kehr G, Ehlert S, Müller M, Grimme S, Erker G. Frustrated Lewis-Pair Neighbors at the Xanthene Framework: Epimerization at Phosphorus and Cooperative Formation of Macrocyclic Adduct Structures. Chemistry 2021; 27:12104-12114. [PMID: 34076908 DOI: 10.1002/chem.202100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/07/2022]
Abstract
Attachment of a pair of P-stereogenic mesityl(alkynyl)phosphanyl groups at the 4- and 5-positions of a 9,9-dimethylxanthene framework gave mixtures of the respective rac- and meso-bisphosphanyl diastereoisomers. They slowly epimerized in a thermally induced reaction with Gibbs activation barriers of about 25 kcal mol-1 at room temperature (measured and DFT calculated). The reaction of the meso-mesityl(tert-butylethynyl)phosphanyl derivative with two molar equivalents of Piers' borane [HB(C6 F5 )2 ] led to the formation of the alkylidene-bridged geminal bisphosphane/borane-frustrated Lewis pair system. The compound was obtained enriched (>85 %) in the rac diastereoisomer. With a variety of bifunctional donor substrates, the rac-bis-P/B FLP formed macrocyclic compounds. They were all formally derived from meso-configurated diastereoisomers of the bisphosphanylxanthene backbone.
Collapse
Affiliation(s)
- Karel Škoch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraβe 4, 53115, Bonn, Germany
| | - Marcel Müller
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraβe 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraβe 4, 53115, Bonn, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| |
Collapse
|
25
|
Li J, Daniliuc CG, Kehr G, Erker G. Formation of amidino-borate derivatives by a multi-component reaction. Org Biomol Chem 2021; 19:5551-5554. [PMID: 34076028 DOI: 10.1039/d1ob00775k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclohexene reacts with the (Fmes)BH2·SMe2 borane reagent and three molar equivalents of the isonitrile CN-Xyl to give the five membered 1,3-BN heterocyclic product 7 that contains a zwitterionic borata-amidinium moiety and a cyclohexenyl substituent. The analogous five-component coupling between cyclopentene, (Fmes)BH2·SMe2 and CN-Xyl in a 1 : 1 : 3 molar ratio gives the related cyclic amidino-borate derivative 10. The reaction of the (Fmes)BH2 derived frustrated Lewis pair 12, in situ generated or employed as the isolated dimer, reacts with 3 CN-Xyl equivs. at elevated temperature (60 °C) to yield the analogous coupling product 13.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| |
Collapse
|
26
|
Föhrenbacher SA, Zeh V, Krahfuss MJ, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane and
N
‐Heterocyclic Carbenes: Adduct Formation and Frustrated
Lewis
Pair Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vivien Zeh
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Consultant Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | - Maik Finze
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
27
|
Škoch K, Daniliuc CG, Kehr G, Erker G. Alkyne 1,1‐Hydroboration to a Reactive Frustrated P/B‐H Lewis Pair. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Karel Škoch
- Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | | | - Gerald Kehr
- Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerhard Erker
- Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
28
|
Ma Y, Lou SJ, Hou Z. Electron-deficient boron-based catalysts for C-H bond functionalisation. Chem Soc Rev 2021; 50:1945-1967. [PMID: 33325932 DOI: 10.1039/d0cs00380h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In contrast to transition metal-catalysed C-H functionalisation, highly efficient construction of C-C and C-X (X = N, O, S, B, Si, etc.) bonds through metal-free catalytic C-H functionalisation remains one of the most challenging tasks for synthetic chemists. In recent years, electron-deficient boron-based catalyst systems have exhibited great potential for C-H bond transformations. Such emerging systems may greatly enrich the chemistry of C-H functionalisation and main-group element catalysis, and will also provide enormous opportunities in synthetic chemistry, materials chemistry, and chemical biology. This article aims to give a timely comprehensive overview to recognise the current status of electron-deficient boron-based catalysis in C-H functionalisation and stimulate the development of more efficient catalytic systems.
Collapse
Affiliation(s)
- Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
29
|
Škoch K, Daniliuc CG, Kehr G, Erker G. Alkyne 1,1-Hydroboration to a Reactive Frustrated P/B-H Lewis Pair. Angew Chem Int Ed Engl 2021; 60:6757-6763. [PMID: 33306863 DOI: 10.1002/anie.202014562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/18/2022]
Abstract
The Mes2 P-C≡C-SiMe3 alkyne reacts with the borane H2 B-Fmes by means of a rare 1,1-hydroboration reaction to give an unsaturated C2 -bridged frustrated P/B-H Lewis pair. Most of its reactions are determined by the presence of the B-H functionality at the FLP function and the activated connecting carbon-carbon double bond. It reduces carbon monoxide to the formyl stage. With nitriles it reacts in an extraordinary way: it undergoes a reaction sequence that eventually results in the formation of a P-substituted dihydro-1,2-azaborole derivative. Several similar examples were found. In one case a P-ylide was isolated that was related to an intermediate of the reaction sequence. It subsequently opened in an alternative way to give an alkenyl borane product.
Collapse
Affiliation(s)
- Karel Škoch
- Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Gerald Kehr
- Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Gerhard Erker
- Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
30
|
Wang Y, Wei S, Duan J, Wang K. Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Navarro M, Campos J. Bimetallic frustrated Lewis pairs. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Zhu Q, Wang P, Zhu J, Zhu C, Zeng G. Chemoselectivity for B-O and B-H Bond Cleavage by Pincer-Type Phosphorus Compounds: Theoretical and Experimental Studies. Inorg Chem 2020; 59:15636-15645. [PMID: 33078928 DOI: 10.1021/acs.inorgchem.0c01920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective cleavage of the B-O bond or B-H bond in HBpin can be achieved by adjusting the pincer ligand of a phosphorus(III) compound guided by a combination of theoretical prediction and experimental verification. Theoretical calculations reveal that a pincer-type phosphorus compound with an [ONO]3- ligand reacts with HBpin, leading to cleavage of the stronger B-O bonds (ΔG°⧧ = 23.2 kcal mol-1) rather than the weaker B-H bond (ΔG°⧧ = 26.4 kcal mol-1). A pincer-type phosphorus compound with a [NNN]3- ligand reacts with HBpin, leading to the weaker B-H bond cleavage (ΔG°⧧ = 16.2 kcal mol-1) rather than cleavage of the stronger B-O bond (ΔG°⧧ = 33.0 kcal mol-1). The theoretical prediction for B-O bond cleavage was verified experimentally, and the final products were characterized by NMR, HRMS, and single-crystal X-ray diffraction. The chemoselectivity of B-O bond cleavage was also observed in the presence of B-C or B-B bonds in borane substrates.
Collapse
Affiliation(s)
- Qin Zhu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210093, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
33
|
Pearce KG, Crossley IR. Diphosphametacyclophanes: Structural and Electronic Influences of Substituent Variation within a Family of Bis(diketophosphanyl) Macrocycles. J Org Chem 2020; 85:14697-14707. [DOI: 10.1021/acs.joc.0c01950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyle G. Pearce
- Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Ian R. Crossley
- Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
34
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to α-Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020; 59:18016-18022. [PMID: 32621386 DOI: 10.1002/anie.202007651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Formyl MIDA boronate has been known to be an elusive type of acylboronate that has not been obtained to date. In this work, an approach to the one-pot preparation and chemical transformations of formyl MIDA boronate were developed to provide new types of α-functionalized organoboron compounds. Among them are acylboronate reagents which present boron-substituted analogues of ynones and β-dicarbonyl compounds. The developed synthetic procedures, utilizing formyl MIDA boronate, are tolerant to diverse functional groups, making this reagent an advantageous C1 building block for extending the scope of organoboron chemistry.
Collapse
Affiliation(s)
- Yevhen M Ivon
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Ivan V Mazurenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Yuliya O Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Zoya V Voitenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
35
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C
1
Building Block Enables Straightforward Access to α‐Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yevhen M. Ivon
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Ivan V. Mazurenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Zoya V. Voitenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
36
|
Wang P, Zhang M, Zhu C. Synthesis, Characterization, and Reactivity of a Pincer-Type Aluminum(III) Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 226019 Nantong, People’s Republic of China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| |
Collapse
|
37
|
Sun X, Su W, Shi K, Xie Z, Zhu C. Triple Frustrated Lewis Pair-Type Reactivity on a Single Rare-Earth Metal Center. Chemistry 2020; 26:5354-5359. [PMID: 31950533 DOI: 10.1002/chem.201905629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 12/28/2022]
Abstract
Rare-earth metal cations have been used rarely as Lewis-acidic components in the chemistry of frustrated Lewis pairs (FLPs). Herein, we report the first cerium/phosphorus system (2) employing a heptadentate N4 P3 ligand, which exhibits triple FLP-type reactivity towards a series of organic substrates, including isocyanates, isothiocyanates, diazomethane, and azides on a single rare-earth Lewis acidic Ce center. This result shows that the Ce center and three P atoms in 2 could simultaneously activate three equivalents of small molecules under mild conditions. This study broadens the diversity of FLPs and demonstrates that rare earth based FLP exhibit unique properties compared with other FLP systems.
Collapse
Affiliation(s)
- Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Su
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Kaiying Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhuoyi Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
38
|
Li J, Daniliuc CG, Kehr G, Erker G. Borane‐Mediated Vinylphosphane Cycloaddition to Conjugated Ynones. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Li
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
39
|
Sun X, Zhu Q, Xie Z, Su W, Zhu J, Zhu C. An Unprecedented Ga/P Frustrated Lewis Pair: Synthesis, Characterization, and Reactivity. Chemistry 2019; 25:14295-14299. [DOI: 10.1002/chem.201904081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xiong Sun
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| | - Qin Zhu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), andDepartment of ChemistryCollege of Chemistry, and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Zhuoyi Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| | - Wei Su
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), andDepartment of ChemistryCollege of Chemistry, and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Congqing Zhu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
40
|
Wang L, Deng D, Škoch K, Daniliuc CG, Kehr G, Erker G. Macrocycle Formation by Cooperative Selection at a Double-Sited Frustrated Lewis Pair. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Wang
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Dongsheng Deng
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Karel Škoch
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, 48149 Münster, Germany
| |
Collapse
|
41
|
Malär AA, Dong S, Kehr G, Erker G, Meier BH, Wiegand T. Characterization of H 2 -Splitting Products of Frustrated Lewis Pairs: Benefit of Fast Magic-Angle Spinning. Chemphyschem 2019; 20:672-679. [PMID: 30663843 DOI: 10.1002/cphc.201900006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/19/2019] [Indexed: 11/09/2022]
Abstract
Proton spectroscopy in solid-state NMR on catalytic materials offers new opportunities in structural characterization, in particular of reaction products of catalytic reactions such as hydrogenation reactions. Unfortunately, the 1 H NMR line widths in magic-angle spinning solid-state spectra are often broadened by an incomplete averaging of 1 H-1 H dipolar couplings. We herein discuss two model compounds, namely the H2 -splitting products of two phosphane-borane Frustrated Lewis Pairs (FLPs), to study potentials and limitations of proton solid-state NMR experiments employing magic-angle spinning frequencies larger than 100 kHz at a static magnetic field strength of 20.0 T. The 1 H lines are homogeneously broadened as illustrated by spin-echo decay experiments. We study two structurally similar materials which however show significant differences in 1 H line widths which we explain by differences in their 1 H-1 H dipolar networks. We discuss the benefit of fast MAS experiments up to 110 kHz to detect the resonances of the H+ /H- pair in the hydrogenation products of FLPs.
Collapse
Affiliation(s)
- Alexander A Malär
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Shunxi Dong
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| |
Collapse
|
42
|
Abstract
Most of the chemical and biological processes involving the fixation and transformation of small molecules have long been exclusive for metal complexes. Meanwhile, the last decades have seen a significant advance in main group chemistry that mimics transition-metal complexes, among which various boron-containing systems have been successful in mediating the small molecule activation. In this review, we focus on boron-containing heterocycles enabling the activation of σ- and π-bonds in small molecules, in conjunction with the proposed mechanisms.
Collapse
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | | |
Collapse
|
43
|
Yao T, Xu P, Xu X. Scandium complexes containing β-diketiminato ligands with pendant phosphanyl groups: competition between Sc/γ-C [4 + 2] cycloaddition and Sc/P frustrated Lewis pair reactions. Dalton Trans 2019; 48:7743-7754. [DOI: 10.1039/c9dt01035a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Scandium complexes based on β-diketimine bearing a phosphanyl group show divergent reaction pathways toward phenyl isocyanate, namely Sc/γ-C [4 + 2] cycloaddition and Sc/P FLP reactions.
Collapse
Affiliation(s)
- Tu Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Pengfei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| |
Collapse
|
44
|
|
45
|
Radius M, Breher F. α-Borylated Phosphorus Ylides (α-BCPs): Electronic Frustration within a C−B π-Bond Arising from the Competition for a Lone Pair of Electrons. Chemistry 2018; 24:15744-15749. [DOI: 10.1002/chem.201803823] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Michael Radius
- Institute of Inorganic Chemistry; Division Molecular Chemistry; Karlsruhe Institute of Technology (KIT); Engesserstr. 15 76131 Karlsruhe Germany
| | - Frank Breher
- Institute of Inorganic Chemistry; Division Molecular Chemistry; Karlsruhe Institute of Technology (KIT); Engesserstr. 15 76131 Karlsruhe Germany
| |
Collapse
|
46
|
Ge F, Tao X, Daniliuc CG, Kehr G, Erker G. The Borole Route to Reactive Pentafluorophenyl-Substituted Diboranes(4). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fang Ge
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
- Institute of Chemistry and Chemical Engineering; Qingdao University; Ningxia road 308 266071 Qingdao China
| | - Xin Tao
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
47
|
Ge F, Tao X, Daniliuc CG, Kehr G, Erker G. The Borole Route to Reactive Pentafluorophenyl-Substituted Diboranes(4). Angew Chem Int Ed Engl 2018; 57:14570-14574. [DOI: 10.1002/anie.201807743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Fang Ge
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
- Institute of Chemistry and Chemical Engineering; Qingdao University; Ningxia road 308 266071 Qingdao China
| | - Xin Tao
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
48
|
Schürmann CJ, Herbst-Irmer R, Teuteberg TL, Kratzert D, Erker G, Mata RA, Stalke D. Experimental charge density study on FLPs and a FLP reaction product. Z KRIST-CRYST MATER 2018. [DOI: 10.1515/zkri-2018-2061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The charge density distribution of the intramolecular frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 (1), the phosphinimine HNPMes2CH2CH2B(C6F5)2 (2), as well as a FLP homologue with nitrogen NEt2CHPhCH2B(C6F5)2 (3) were investigated with Bader’s quantum theory of atoms in molecules (QTAIM). The charge densities were derived from both experimental high-resolution X-ray diffraction data (2, 3) and theoretical calculations (1, 3). The QTAIM analysis for the FLPs 1 and 3 showed the prominent B-pnictogen interaction to be weak dative bonds without significant charge-transfer. This holds also true for the B–N–bond of 2. The nitrogen atom is negatively charged, due to a charge transfer from phosphorous and shows features of a sp2-hybridization. The bond is therefore best described as a non-hypervalent Pδ+–Nδ− moiety.
Collapse
Affiliation(s)
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstraße 4 , Göttingen 37077 , Germany
| | | | - Daniel Kratzert
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstraße 4 , Göttingen 37077 , Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Universität Münster , Corrensstraße 40 , Münster 48149 , Germany
| | - Ricardo A. Mata
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstraße 6 , Göttingen 37077 , Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstraße 4 , Göttingen 37077 , Germany
| |
Collapse
|
49
|
Ueno A, Tao X, Daniliuc CG, Kehr G, Erker G. Unusual 1,1-Hydroboration Route to a Reactive Unsaturated Vicinal Frustrated Phosphane/Borane Lewis Pair. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Ueno
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Xin Tao
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
50
|
Krachko T, Nicolas E, Ehlers AW, Nieger M, Slootweg JC. Ring-opening of Epoxides Mediated by Frustrated Lewis Pairs. Chemistry 2018; 24:12669-12677. [DOI: 10.1002/chem.201801909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Tetiana Krachko
- Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, P.O. Box 94157 1090 GD Amsterdam The Netherlands
| | - Emmanuel Nicolas
- Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, P.O. Box 94157 1090 GD Amsterdam The Netherlands
- Current address: NIMBE, CEA, CNRS; Université Paris-Saclay, CEA Saclay; 91191 Gif sur Yvette Cedex France
| | - Andreas W. Ehlers
- Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, P.O. Box 94157 1090 GD Amsterdam The Netherlands
- Department of Chemistry, Science Faculty; University of Johannesburg; P.O. Box 254 Auckland Park Johannesburg South Africa
| | - Martin Nieger
- Department of Chemistry; University of Helsinki; A. I. Virtasen aukio 1, P.O. Box 55 Helsinki Finland
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, P.O. Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|