1
|
Li S, Schröder M, Prudlik A, Shi X, Spannenberg A, Rabeah J, Francke R, Corzilius B, Reiß F, Beweries T. A General Concept for the Electronic and Steric Modification of 1-Metallacyclobuta-2,3-dienes: A Case Study of Group 4 Metallocene Complexes. Chemistry 2024; 30:e202400708. [PMID: 38529695 DOI: 10.1002/chem.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The synthesis of group 4 metal 1-metallacyclobuta-2,3-dienes as organometallic analogues of elusive 1,2-cyclobutadiene has so far been limited to SiMe3 substituted examples. We present the synthesis of two Ph substituted dilithiated ligand precursors for the preparation of four new 1-metallacyclobuta-2,3-dienes [rac-(ebthi)M] (M=Ti, Zr; ebthi=1,2-ethylene-1,10-bis(η5-tetrahydroindenyl)). The organolithium compounds [Li2(RC3Ph)] (1 b: R=Ph, 1 c: R=SiMe3) as well as the metallacycles of the general formula [rac-(ebthi)M(R1C3R2)] (2 b: M=Ti, R1=R2=Ph, 2 c: M=Ti, R1=Ph, R2=SiMe3; 3 b: M=Zr, R1=R2=Ph; 3 c: M=Zr, R1=Ph, R2=SiMe3) were fully characterised. Single crystal X-ray diffraction and quantum chemical bond analysis of the Ti and Zr complexes reveal ligand influence on the biradicaloid character of the titanocene complexes. X-band EPR spectroscopy of structurally similar Ti complexes [rac-(ebthi)Ti(Me3SiC3SiMe3)] (2 a), 2 b, and 2 c was carried out to evaluate the accessibility of an EPR active triplet state. Cyclic voltammetry shows that introduction of Ph groups renders the complexes easier to reduce. 13C CPMAS NMR analysis provides insights into the cause of the low field shift of the resonances of metal-bonded carbon atoms and provides evidence of the absence of the β-C-Ti interaction.
Collapse
Affiliation(s)
- Sihan Li
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Mirjam Schröder
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
| | - Xinzhe Shi
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Anke Spannenberg
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Björn Corzilius
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| | - Fabian Reiß
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Torsten Beweries
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| |
Collapse
|
2
|
Maier M, Chorbacher J, Hellinger A, Klopf J, Günther J, Helten H. Poly(arylene iminoborane)s, Analogues of Poly(arylene vinylene) with a BN-Doped Backbone: A Comprehensive Study. Chemistry 2023:e202302767. [PMID: 37724629 DOI: 10.1002/chem.202302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Despite the great success of the concept of doping organic compounds with BN units to access new materials with tailored properties, its use in polymer chemistry has only been realized quite recently. Herein, we present a comprehensive study of oligo- and poly(arylene iminoborane)s comprising a backbone of phenylene or thiophene moieties, as well as combinations thereof, linked via B=N units. The novel polymers can be regarded as BN analogues of poly(p-phenylene vinylene) (PPV) or poly(thiophene vinylene) (PTV) or their copolymers. Our modular synthetic approach allowed us to prepare four polymers and 12 monodisperse oligomers with modulated electronic properties. Alternating electron-releasing diaminoarylene and electron-accepting diborylarylene building blocks gave rise to a pronounced donor-acceptor character. Effective π-conjugation over the arylene iminoborane backbone is evidenced by systematic bathochromic shifts of the low-energy UV-vis absorption maximum with increasing chain length, which is furthermore supported by crystallographic and computational investigations. Furthermore, all compounds investigated show emission of visible light in the solid state and aggregation-induced emission (AIE) behavior, due to the presence of partially flexible linear B=N linkages in the backbone.
Collapse
Affiliation(s)
- Matthias Maier
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Chorbacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anna Hellinger
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Günther
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
3
|
Bohlen JL, Endres L, Drescher R, Radacki K, Dietz M, Krummenacher I, Braunschweig H. Boroles from alumoles: accessing boroles with alkyl-substituted backbones via transtrielation. Chem Sci 2023; 14:9010-9015. [PMID: 37655034 PMCID: PMC10466280 DOI: 10.1039/d3sc02668j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
The alumole Cp3tAlC4Et4 (Cp3t = 1,2,4-tris(tert-butyl)cyclopentadienyl) is reported to be capable of transferring its butadiene moiety to aryl(dihalo)boranes to generate boroles through aluminum-boron exchange. The products feature a rare alkyl-substituted backbone, which, as shown in other examples, often leads to dimerization due to insufficient steric protection of the antiaromatic borole ring. Sterically crowded aryl groups bound to the boron atom are shown to prevent dimerization, allowing access to the first monomeric derivatives of this type. Results from UV-vis spectroscopy, electrochemistry, and DFT calculations reveal that the alkyl substituents cause remarkable modifications in the optical and electronic properties of the boroles compared to their perarylated counterparts.
Collapse
Affiliation(s)
- Josina L Bohlen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Regina Drescher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
4
|
Rong Wong Z, Schramm TK, Loipersberger M, Head-Gordon M, Toste FD. Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)-Cyclobutadiene Complex. Angew Chem Int Ed Engl 2022; 61:e202202019. [PMID: 35261142 PMCID: PMC9173747 DOI: 10.1002/anie.202202019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 11/12/2022]
Abstract
Understanding the bonding of gold(I) species has been central to the development of gold(I) catalysis. Herein, we present the synthesis and characterization of the first gold(I)-cyclobutadiene complex, accompanied with bonding analysis by state-of-the-art energy decomposition analysis methods. Analysis of possible coordination modes for the new species not only confirms established characteristics of gold(I) bonding, but also suggests that Pauli repulsion is a key yet hitherto overlooked element. Additionally, we obtain a new perspective on gold(I)-bonding by comparison of the gold(I)-cyclobutadiene to congeners stabilized by p-, d-, and f-block metals. Consequently, we refine the gold(I) bonding model, with a delicate interplay of Pauli repulsion and charge transfer as the key driving force for various coordination motifs. Pauli repulsion is similarly determined as a significant interaction in AuI -alkyne species, corroborating this revised understanding of AuI bonding.
Collapse
Affiliation(s)
- Zeng Rong Wong
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
| | - Tim K. Schramm
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Department of Chemistry, RWTH Aachen University, Landoltweg 1 Aachen, 52074 (Germany)
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A3307, Berkeley, CA 94720 (USA)
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A3307, Berkeley, CA 94720 (USA)
| |
Collapse
|
5
|
Zha J, Wang Z, Liu B, Tan Q, Xu B. Multicomponent Reaction of Isocyanide, Ditelluride, and Mn(III) Carboxylate: Synthesis of N-Acyl Tellurocarbamate. Org Lett 2022; 24:2863-2867. [PMID: 35420436 DOI: 10.1021/acs.orglett.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of isocyanides, ditellurides and manganese(III) carboxylates under mild reaction conditions leads to the synthesis of various N-acyl tellurocarbamates. This method demonstrates good functional tolerance and broad substrate scope and, as a result, is especially suitable for the postfunctionalization of complicated molecules such as drugs. The given method can be further extended to the synthesis of selenocarbamates.
Collapse
Affiliation(s)
- Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Zhuoer Wang
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Wong ZR, Schramm TK, Loipersberger M, Head‐Gordon M, Toste FD. Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)‐Cyclobutadiene Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zeng Rong Wong
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
| | - Tim K. Schramm
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Department of Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Matthias Loipersberger
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
| | - Martin Head‐Gordon
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road, MS 70A3307 Berkeley CA 94720 USA
| | - F. Dean Toste
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road, MS 70A3307 Berkeley CA 94720 USA
| |
Collapse
|
7
|
Watson IC, Ferguson MJ, Rivard E. Zinc-Mediated Transmetalation as a Route to Anionic N-Heterocyclic Olefin Complexes in the p-Block. Inorg Chem 2021; 60:18347-18359. [PMID: 34738790 DOI: 10.1021/acs.inorgchem.1c02961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic N-heterocyclic olefins (aNHOs) are suited well for the stabilization of low-coordinate inorganic complexes, due to their steric tunability and strong σ- and π-electron donating abilities. In this study, the new two-coordinate zinc complex (MeIPrCH)2Zn (MeIPrCH = [(MeCNDipp)2C═CH]-, Dipp = 2,6-diisopropylphenyl) is shown to participate in a broad range of metathesis reactions with main group element-based halides and hydrides. In the case of the group 14 halides, Cl2E·dioxane (E = Ge and Sn), transmetalation occurs to form dinuclear propellane-shaped cations, [(MeIPrCHE)2(μ-Cl)]+, while the aNHO-capped phosphine ligand MeIPrCH-PPh2 is obtained when (MeIPrCH)2Zn is combined with ClPPh2. Lastly, ZnH2 elimination drives transmetalation between (MeIPrCH)2Zn and hydroboranes and hydroalumanes, leading to Lewis acidic aNHO-supported -boryl and -alane products.
Collapse
Affiliation(s)
- Ian C Watson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
8
|
Rosenthal U. Latest News: Reactions of Group 4 Bis(trimethylsilyl)acetylene Metallocene Complexes and Applications of the Obtained Products. ChemistryOpen 2021; 10:1234-1243. [PMID: 34882978 PMCID: PMC8659550 DOI: 10.1002/open.202100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recently published reactions of group 4 metallocene bis(trimethylsilyl)acetylene (btmsa) complexes from the last two years are reviewed. Complexes like Cp'2 Ti(η2 -Me3 SiC2 SiMe3 ) and Cp2 Zr(py)(η2 -Me3 SiC2 SiMe3 ) with Cp' as Cp (cyclopentadienyl) and Cp* (pentamethylcyclopentadienyl) have been considered (py=pyridine). These complexes can liberate a reactive low-valent titanium or zirconium center by dissociation of the ligands and act as ''masked'' MII complexes (M=Ti, Zr). They represent excellent sources for the clean generation of the reactive coordinatively and electronically unsaturated complex fragments [Cp'2 M]. This is the reason why they were used for many synthetic and catalytic reactions during the last years. As an update to several review articles on this topic, this contribution provides an update with recent examples of preparative organometallic and organic chemistry of these complexes, acting as reagents for a wide range of coordinating and coupling reactions. In addition, applications and investigations concerning reaction products derived from this chemistry are mentioned, too.
Collapse
Affiliation(s)
- Uwe Rosenthal
- Leibniz Institute for Catalysis at theUniversity of RostockAlbert-Einstein-Str. 29 A18059RostockGermany
| |
Collapse
|
9
|
Ramirez Y Medina IM, Rohdenburg M, Rusch P, Duvinage D, Bigall NC, Staubitz A. π-Conjugated stannole copolymers synthesised by a tin-selective Stille cross-coupling reaction. MATERIALS ADVANCES 2021; 2:3282-3293. [PMID: 34124683 PMCID: PMC8142672 DOI: 10.1039/d1ma00104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of four well-defined conjugated polymers TStTT1-4 containing unusual heterocycle units in the main chain, namely stannole units as building blocks, is reported. The stannole-thiophenyl copolymers were generated by tin-selective Stille coupling reactions in nearly quantitative yields of 94% to 98%. NMR data show that the tin atoms in the rings remain unaffected. Weight-average molecular weights (M w) were high (4900-10 900 Da and 9600-21 900 Da); and molecular weight distributions (M w/M n) were between 1.9 and 2.3. The new materials are strongly absorbing and appear blue-black to purple-black. All iodothiophenyl-stannole monomers St1-4 and the resulting bisthiophenyl-stannole copolymers TStTT1-4 were investigated with respect to their optoelectronic properties. The absorption maxima of the polymers are strongly bathochromically shifted compared to their monomers by about 76 nm to 126 nm in chloroform. Density functional theory calculations support our experimental results of the single stannoles St1-4 showing small HOMO-LUMO energy gaps of 3.17-3.24 eV. The optical band gaps of the polymers are much more decreased and were determined to be only 1.61-1.79 eV. Furthermore, both the molecular structures of stannoles St2 and St3 from single crystal X-ray analyses and the results of the geometry optimisation by DFT confirm the high planarity of the molecules backbone leading to efficient conjugation within the molecule.
Collapse
Affiliation(s)
- Isabel-Maria Ramirez Y Medina
- Institute for Organic and Analytical Chemistry, University of Bremen Leobener Str. 7 28359 Bremen Germany
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
| | - Markus Rohdenburg
- University of Bremen, Institute for Applied and Physical Chemistry Leobener Str. 5 28359 Bremen Germany
- University of Leipzig, Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry Linnéstr. 2 04103 Leipzig Germany
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) Hannover Germany
| | - Daniel Duvinage
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
- Institute of Inorganic Chemistry and Crystallography, University of Bremen Leobener Str. 7 28359 Bremen Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) Hannover Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen Leobener Str. 7 28359 Bremen Germany
- MAPEX Center for Materials and Processes, University of Bremen Bibliothekstr. 1 28359 Bremen Germany
| |
Collapse
|
10
|
Braun CA, Ferguson MJ, Rivard E. Tellura(benzo)bithiophenes: Synthesis, Oligomerization, and Phosphorescence. Inorg Chem 2021; 60:2672-2679. [PMID: 33481578 DOI: 10.1021/acs.inorgchem.0c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of planar π-extended Te-containing heteroacenes, termed tellura(benzo)bithiophenes, were synthesized. This new structural class of heterocycle features a tellurophene ring fused to a benzobithiophene unit with aromatic side groups (either -C6H4iPr or -C6H4OCH3) positioned at the 2- and 5-positions of the tellurophene moiety. Although attempts to enhance molecular rigidity and extend ring-framework π-delocalization in a cumenyl (-C6H4iPr)-capped tellura(benzo)bithiophene led to oxidation (and Te-C bond scission) to form a diene-one, the formation of an oligomeric tellura(benzo)bithiophene was possible via Kumada catalyst-transfer polycondensation (KCTP). Furthermore, one tellura(benzo)bithiophene derivative exhibits orange-red phosphorescence at room temperature in air when incorporated into a poly(methyl methacrylate) host; accompanying TD-DFT computations provided insight into a potential mechanism for the observed phosphorescence.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
11
|
Barát V, Stuparu MC. Corannulene Chalcogenides. Chem Asian J 2020; 16:20-29. [PMID: 33085173 DOI: 10.1002/asia.202001140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Indexed: 01/09/2023]
Abstract
The introduction of chalcogen atoms into a polycyclic aromatic hydrocarbon structure is an established method to tune material properties. In the context of corannulene (C20 H10 ), a fragment of fullerene C60 , such structural adjustments have given rise to an emerging class of functional and responsive molecular materials. In this minireview, our aim is to discuss the synthesis and properties of such chalcogen (sulfur, selenium, and tellurium) derivatives of corannulene.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| |
Collapse
|
12
|
Rosenthal U. Update for Reactions of Group 4 Metallocene Bis(trimethylsilyl)acetylene Complexes: A Never-Ending Story? Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00622] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- U. Rosenthal
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29A, 18059 Rostock, Germany
| |
Collapse
|