1
|
Gou XY, Oliveira JCA, Chen S, Homölle SL, Trienes S, von Münchow T, Zhang BS, Ackermann L. Ruthenaelectro-catalyzed C-H phosphorylation: ortho to para position-selectivity switch. Chem Sci 2025; 16:824-833. [PMID: 39650220 PMCID: PMC11619359 DOI: 10.1039/d4sc06219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The position-selective C-H bond activation of arenes has long been a challenging topic. Herein, we report an expedient ruthenium-electrocatalyzed site-selective ortho-C-H phosphorylation of arenes driven by electrochemical hydrogen evolution reaction (HER), avoiding stoichiometric amounts of chemical redox-waste products. This strategy paved the way to achieve unprecedented ruthenaelectro-catalyzed para-C-H phosphorylation with excellent levels of site-selectivity. This electrocatalytic approach was characterized by an ample substrate scope with a broad range of arenes containing N-heterocycles, as well as several aryl/alkylphosphine oxides were well tolerated. Moreover, late-stage C-H phosphorylation of medicinal relevant drugs could also be achieved. DFT mechanistic studies provided support for an unusual ruthenium(iii/iv/ii) regime for the ortho-C-H phosphorylation.
Collapse
Affiliation(s)
- Xue-Ya Gou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - João C A Oliveira
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Shan Chen
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Bo-Sheng Zhang
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
2
|
Liu J, Li H, Guo W, Cai Z, Li M, Zhang LB. Electrochemical Decarboxylation Coupling Reactions. Chemistry 2024; 30:e202402621. [PMID: 39413120 DOI: 10.1002/chem.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 10/18/2024]
Abstract
Carboxylic acids are attractive synthetic feedstocks with stable, non-toxic, and inexpensive properties that can be easily obtained from natural sources or through synthesis. Carboxylic acids have long been considered environmentally friendly coupling agents in various organic transformations. In recent years, electrochemically mediated decarboxylation reactions of decarboxylic acids and their derivatives (NHPI) have emerged as effective new methods for constructing carbon-carbon or carbon-heterocarbon chemical bonds. Compared with transition metal and photochemistry-mediated catalytic reactions, which do not require the addition of oxidants and strong bases, electrochemically-mediated decarboxylative transformations are considered a sustainable strategy. In addition, various functional groups tolerate the electrochemical decarboxylation conversion strategy well. Here, we summarize the recent electrochemical decarboxylation reactions to better elucidate the advantages of electrochemical decarboxylation reactions.
Collapse
Affiliation(s)
- Jiaxiu Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoran Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Capucciati A, Baraglia L, Cassera E, Merli D, Capaldo L, Ravelli D. Selective Oxidation of Alcohols to Carbonyls Under Decatungstate-Mediated Photoelectrochemical Conditions. Chemistry 2024; 30:e202402986. [PMID: 39301673 DOI: 10.1002/chem.202402986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The oxidation of alcohols to the corresponding carbonyl derivatives has been realized under photoelectrochemical conditions in the presence of tetrabutylammonium decatungstate (TBADT) as the homogeneous photocatalyst. The protocol can be applied to both primary and secondary, benzylic and aliphatic alcohols. The desired products are obtained selectively, skipping the need for purposely added chemical oxidants. An in-depth study of photoelectrochemical conditions revealed that the protocol works best under amperostatic conditions in an undivided electrochemical cell irradiated with a 390 nm LED lamp. The comparison with analogous electrochemical and chemical oxidant-promoted photocatalytic transformations demonstrates the superior efficiency and selectivity of the hereby reported photoelectrochemical conditions.
Collapse
Affiliation(s)
- Andrea Capucciati
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Baraglia
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Elena Cassera
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Daniele Merli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Capaldo
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma., Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
4
|
Huang QH, Li SX, Kang JC, Liu RX, Li ZH, Xiong F, Ding TM, Zhang SY. Regioselective Electrooxidative [3+2] Annulation between Indole and Aniline Derivatives to Construct Functionalized Indolo[2,3- b]indoles. Org Lett 2024; 26:5657-5663. [PMID: 38941517 DOI: 10.1021/acs.orglett.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
A protocol for the electrooxidative [3+2] annulation to generate indolo[2,3-b]indoles in an undivided cell is reported. It exhibits good yields with excellent regioselectivities and tolerates various functional groups without external chemical oxidants. Cyclic voltammetry and density functional theory calculations indicate that the [3+2] annulation is initiated by the simultaneous anodic oxidation of indole and aniline derivatives, and the step to determine the rate relies on the combination of radical cations.
Collapse
Affiliation(s)
- Qing-Hong Huang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuai-Xin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Xiong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Inner Mongolia 010052, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Du C, Zhang Y, Li T, Zha Z, Wang Z. Electrochemical dual oxidative C(sp 3)-H amination: switchable synthesis of imidazo-fused quinazolinones. Chem Commun (Camb) 2024; 60:5274-5277. [PMID: 38591991 DOI: 10.1039/d4cc00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
An efficient electrochemical dual C(sp3)-H amination was developed under metal-free and chemical oxidant-free conditions. A series of imidazo[1,5-a]quinazolin-5(4H)-ones and 5-oxo-4,5-dihydroimidazo[1,5-a]quinazoline-3-carbonitriles can be obtained in high yields and the product distribution can be modulated by virtue of this method. The reaction mechanism was investigated and the corresponding intermediates were studied. The reaction features a broad substrate scope, regulation of the product distribution, mild conditions and scalable preparation.
Collapse
Affiliation(s)
- Chengbin Du
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Tong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
6
|
Huang PF, Fu JL, Peng Y, Tang KW, Liu Y. Electrochemical Oxidative (4 + 2) Cyclization of Anilines and o-Phenylenediamines for the Synthesis of Phenazines. Org Lett 2024; 26:3756-3761. [PMID: 38678581 DOI: 10.1021/acs.orglett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Phenazines, crucial constituents of nitrogen-containing heterocycles, widely exist in functional compounds. Herein, we report an anodic oxidative (4 + 2) cyclization between anilines and o-phenylenediamines for the uniform construction of phenazines in a simple undivided cell. Dual C-H amination followed by oxidation represents an outstanding step and atom efficiency. A sequence of phenazines is produced with excellent functional group tolerance at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
7
|
Huang PF, Fu JL, Peng Y, Fan JH, Zhong LJ, Tang KW, Liu Y. Electro-oxidative three-component cascade coupling of isocyanides with elemental sulfur and amines for the synthesis of 2-aminobenzothiazoles. Org Biomol Chem 2024; 22:3752-3760. [PMID: 38652536 DOI: 10.1039/d4ob00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
2-Aminobenzothiazoles are commonly encountered in various functional compounds. Herein, we disclose an electro-oxidative three-component reaction for the effective synthesis of 2-aminobenzothiazoles under mild conditions, utilizing non-toxic and abundant elemental sulfur as the sulfur source. Both aliphatic amines and aryl amines demonstrate good compatibility at room temperature, highlighting the broad functional group tolerance of this approach. Additionally, elemental selenium demonstrated reactivities comparable to those of elemental sulfur.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
8
|
Ji HT, Jiang J, He WB, Lu YH, Liu YY, Li X, He WM. Electrochemical Multicomponent Cascade Reaction for the Synthesis of Selenazol-2-amines with Elemental Selenium. J Org Chem 2024; 89:4113-4119. [PMID: 38448366 DOI: 10.1021/acs.joc.3c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first example of an electrochemical multicomponent synthesis of selenium-containing compounds with inexpensive and abundant elemental selenium as the selenating reagent was developed. A variety of selenazol-2-amines were constructed in high yields with good functional group tolerance under metal-free and chemical oxidant-free conditions.
Collapse
Affiliation(s)
- Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Bao He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yuan-Yuan Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Wu S, Huang J, Kang L, Zhang Y, Yuan K. Transition-Metal-Free, Reductive Csp 2-Csp 3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Org Lett 2024; 26:763-768. [PMID: 38227333 DOI: 10.1021/acs.orglett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Kang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
10
|
He T, Liang C, Cheng H, Shi S, Huang S. Cathodically Coupled Electrolysis to Access Biheteroaryls. Org Lett 2024; 26:607-612. [PMID: 38206057 DOI: 10.1021/acs.orglett.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An electrochemical approach to biheteroaryls through the coupling of diverse N-heteroarenes with heteroaryl phosphonium salts is reported. The reaction features pH and redox-neutral conditions and excellent regioselectivity, as well as exogenous air or moisture tolerance. Additionally, a one-pot, two-step protocol can be established to realize formal C-H/C-H coupling of heteroarenes, thereby greatly expanding the substrate availability. The utility of this method is demonstrated through late-stage functionalization, the total synthesis of nitraridine, and antifungal activity studies.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Haoyuan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhou W, Li ZQ, Cheng C, Lu L, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Arene Radical Cation Promoted Spirocyclization of Biaryl Ynones: Access to Alkoxylated Spiro[5,5]trienones. Org Lett 2023; 25:9158-9163. [PMID: 38101415 DOI: 10.1021/acs.orglett.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Herein, a novel electrochemical arene radical cation promoted dearomative spirocyclization of biaryl ynones with alcohols is described, providing a conceptually novel transformation mode for producing diverse alkoxylated spiro[5,5]trienones. The catalyst- and chemical-oxidant-free spirocyclization protocol features broad substrate scope and high functional group tolerance. Mechanistic studies reveal that the generation of arene radical cation via anodic single-electron oxidation is crucial, with sequential 6-endo-dig cyclization, dissociation of hemiketal, anodic oxidation, and nucleophilic attack of alcohols.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zi-Qiong Li
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chaozhihui Cheng
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Lin Lu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
12
|
Struwe J, Ackermann L. Photoelectrocatalyzed undirected C-H trifluoromethylation of arenes: catalyst evaluation and scope. Faraday Discuss 2023; 247:79-86. [PMID: 37466161 DOI: 10.1039/d3fd00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
During the last few years, photoelectrocatalysis has evolved as an increasingly viable tool for molecular synthesis. Despite several recent reports on the undirected C-H functionalization of arenes, thus far, a detailed comparison of different catalysts is still missing. To address this, more than a dozen different mediators were employed in the trifluoromethylation of (hetero-)arenes to compare them in their efficacies.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Lu YH, Mu SY, Jiang J, Zhou MH, Wu C, Ji HT, He WM. Paraformaldehyde as C1 Synthon: Electrochemical Three-Component Synthesis of Tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones in Aqueous Ethanol. CHEMSUSCHEM 2023; 16:e202300523. [PMID: 37728196 DOI: 10.1002/cssc.202300523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/21/2023]
Abstract
A green and practical method for the electrochemical synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones through the three-component reaction of quinoxalin-2(1H)-ones, N-arylglycines and paraformaldehyde was reported. In this strategy, EtOH played dual roles (eco-friendly solvent and waste-free pre-catalyst) and the in situ generated ethoxide promoted triple sequential deprotonations.
Collapse
Affiliation(s)
- Yu-Han Lu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Yu Mu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Fang S, Zhong K, Zeng S, Hu X, Sun P, Ruan Z. The electrochemically enabled α-C(sp 3)-H azolation of ketones. Chem Commun (Camb) 2023; 59:11425-11428. [PMID: 37671488 DOI: 10.1039/d3cc02852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
C-H/N-H cross-coupling has become a key technology for the selective conjugation of azole drug molecules. However, the development of new synthetic models and green chemical methods is imperative to enhance the construction of multi-functional compounds and compounds with unique functional groups. We herein reported an electrochemical synthesis of α-tetrazolyl ketones with excellent yields and broad substrate scope, encompassing electron-donating and electron-withdrawing groups of aryl ketones, heterocycles, and alkyl and various ketone drugs. It was further proved that α-iodoketone was involved in this transformation of the reaction as a critical intermediate.
Collapse
Affiliation(s)
- Songlin Fang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Kaihui Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Shaogao Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Pinghua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| |
Collapse
|
15
|
Wen L, Zhou N, Zhang Z, Liu C, Xu S, Feng P, Li H. Electrochemical Difunctionalization of gem-Difluoroalkenes: A Metal-Free Synthesis of α-Difluoro(alkoxyl/azolated) Methylated Ethers. Org Lett 2023; 25:3308-3313. [PMID: 37129411 DOI: 10.1021/acs.orglett.3c01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A scalable electrochemical difunctionalization of gem-difluoroalkenes to structurally versatile difluoro motifs was achieved. This methodology features reagent-free conditions, good functional group tolerance, and a relatively broad substrate scope. Meanwhile, the electrolysis protocol is easy to handle, and the products show good regio- and chemoselectivity. The reaction mechanism was also preliminarily studied.
Collapse
Affiliation(s)
- Linzi Wen
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Naifu Zhou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhicheng Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Cong Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Shihai Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hongsheng Li
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
17
|
Gu Q, Cheng Z, Qiu X, Zeng X. Recent Advances in the Electrochemical Functionalization of Isocyanides. CHEM REC 2023; 23:e202200177. [PMID: 36126178 DOI: 10.1002/tcr.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Isocyanides are well-known as efficient CO surrogates and C1 synthons in modern organic synthesis. Although tremendous efforts have been devoted to fully exploiting the reactivity of isocyanides, these transformations are primarily limited by their utilization of stoichiometric toxic chemical oxidants. With the recent resurgence of organic electrochemistry, which has considerably laid dormant over the past several decades, electrolysis has been identified as a green and powerful tool to enrich structural diversity by solely utilizing electric current as clean and inherently safe redox equivalents of stoichiometric chemical oxidants. In this regard, the unique reactivity of isocyanides has been studied in numerous electrochemical transformations. This review comprehensively highlights the most relevant progress in electrochemical strategies towards the functionalization of isocyanides up until June of 2022, with a focus on reaction outcomes and mechanisms.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Zhenfeng Cheng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| |
Collapse
|
18
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
19
|
TBAI/H2O-cooperative electrocatalytic decarboxylation coupling-annulation of quinoxalin-2(1H)-ones with N-arylglycines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Jiang YS, Liu F, Huang MS, Luo XL, Xia PJ. Photocatalytic Modular Cyanoalkylamination of Alkenes Involving Two Different Iminyl Radicals. Org Lett 2022; 24:8019-8024. [PMID: 36264241 DOI: 10.1021/acs.orglett.2c03233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular cyanoalkylamination of alkenes using bench-stable and easy-to-handle α-imino-oxy acid oxime esters as difunctional reagents creates new synthetic avenues. A metal-free photosensitization protocol for the installation of both amino and cyanoalkyl functionalities onto alkene feedstocks in a single step via two differently reactive nitrogen-centered radicals was developed via energy-transfer catalysis. Excellent functional group tolerance and mild reaction conditions also render this protocol suitable for the cyanoalkylamination of pharmaceutically relevant molecule-derived alkenes.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Miao-Sha Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
21
|
Electrochemically time-dependent oxidative coupling/coupling-cyclization reaction between heterocycles: tunable synthesis of polycyclic indole derivatives with fluorescence properties. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chen C, Liu RX, Xiong F, Li ZH, Kang JC, Ding TM, Zhang SY. Electrochemical collective synthesis of labeled pyrroloindoline alkaloids with Freon-type methanes as functional C1 synthons. Chem Commun (Camb) 2022; 58:9230-9233. [PMID: 35899819 DOI: 10.1039/d2cc03301a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of Freon-type methanes as functional one-carbon synthons in the synthesis of various deuterated indoline alkaloids was demonstrated here. A series of halomethyl radicals were generated from electro-reductive C-X cleavage of Freon-type methanes and captured efficiently by acrylamides to provide various halogenated oxindoles via radical cyclization. This reaction features good functional group tolerance, and deuterium and fluorine atoms could be introduced facilely from Freon-type methanes. Further transformation of halogenated oxindoles enabled the synthesis of many (labeled) bioactive drug molecules and skeletons, such as deuterated (±)-physostigmine, deuterated (±)-esermethole and deuterated (±)-lansai B.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Feng Xiong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
23
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
24
|
Fried AD, Wilson BJ, Galan NJ, Brantley JN. Electroediting of Soft Polymer Backbones. J Am Chem Soc 2022; 144:8885-8891. [PMID: 35576583 DOI: 10.1021/jacs.2c02098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic methods that edit soft polymer backbones are critical technologies for tailoring the structures and properties of macromolecules. Developing strategies that leverage underexplored reaction manifolds are vital for accessing new chemical (and functional) space in soft materials. Here, we report a mild electrochemical approach that enables both degradation and functionalization of synthetic polymers. We found that bulk electrolysis (under either homogeneous or heterogeneous conditions) promoted facile, chemoselective chain scission in a variety of olefin-containing materials. Polymer degradation could also be coupled with functionalization (e.g., azidation) to afford new species that could serve as macromonomers.
Collapse
Affiliation(s)
- Alan D Fried
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Breana J Wilson
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nicholas J Galan
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Johnathan N Brantley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
25
|
Yang L, Zhang Z, Bongsuiru Jei B, Ackermann L. Electrochemical Cage Activation of Carboranes. Angew Chem Int Ed Engl 2022; 61:e202200323. [PMID: 35148009 PMCID: PMC9310615 DOI: 10.1002/anie.202200323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Carboranes are boron-carbon molecular clusters that possess unique properties, such as their icosahedron geometry, high boron content, and delocalized three-dimensional aromaticity. These features render carboranes valuable building blocks for applications in supramolecular design, nanomaterials, optoelectronics, organometallic coordination chemistry, and as boron neutron capture therapy (BNCT) agents. Despite tremendous progress in this field, stoichiometric chemical redox reagents are largely required for the oxidative activation of carborane cages. In this context, electrosyntheses represent an alternative strategy for more sustainable molecular syntheses. It is only in recent few years that considerable progress has been made in electrochemical cage functionalization of carboranes, which are summarized in this Minireview. We anticipate that electrocatalysis will serve as an increasingly powerful stimulus within the current renaissance of carborane electrochemistry.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Zi‐Jing Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
26
|
Liang Y, Niu L, Liang X, Wang S, Wang P, Lei A. Electrooxidation‐Induced
C(sp
3
)‐H/ C(sp
2
)‐H
Radical‐Radical
Cross‐coupling between Xanthanes and Electron‐rich Arenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuwei Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Linbin Niu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Xing‐An Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Pengjie Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
27
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angew Chem Int Ed Engl 2022; 61:e202107811. [PMID: 34478188 PMCID: PMC9303540 DOI: 10.1002/anie.202107811] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.
Collapse
Affiliation(s)
- Shangze Wu
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Jaspreet Kaur
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Tobias A. Karl
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Xianhai Tian
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
28
|
Electrochemical regioselective synthesis of N-substituted/unsubstituted 4-selanylisoquinolin-1(2H)-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Yang L, Zhang ZJ, Jei BB, Ackermann L. Electrochemical Cage Activation of Carboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Long Yang
- University of Göttingen: Georg-August-Universitat Gottingen IOBC GERMANY
| | - Zi-Jing Zhang
- University of Göttingen: Georg-August-Universitat Gottingen IOBC GERMANY
| | | | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
30
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shangze Wu
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Jaspreet Kaur
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Tobias A. Karl
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Xianhai Tian
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
31
|
Xiao Q, Tong QX, Zhong JJ. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Chen JY, Li HX, Mu SY, Song HY, Wu ZL, Yang TB, Jiang J, He WM. Electrocatalytic three-component synthesis of 4-halopyrazoles with sodium halide as the halogen source. Org Biomol Chem 2022; 20:8501-8505. [DOI: 10.1039/d2ob01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The first example of the electrocatalytic multicomponent synthesis of 4-chloro/bromo/iodopyrazoles from hydrazines, acetylacetones and sodium halides under chemical oxidant- and external electrolyte-free conditions has been developed.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Xia Li
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Si-Yu Mu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
33
|
Liu Y, Wang Z, Meng J, Li C, Sun K. Research Progress of Photoelectric Co-catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Li B, Qin H, Yan K, Ma J, Yang J, Wen J. NHPI-catalyzed electrochemical C–H alkylation of indoles with alcohols to access di(indolyl)methanes via radical coupling. Org Chem Front 2022. [DOI: 10.1039/d2qo01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present indirect electrochemically mediated radical protocol outperforms the traditional Friedel–Crafts route with a broad substrate scope and functional group tolerance, as well as facile gram-scale synthesis without metal contamination.
Collapse
Affiliation(s)
- Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongyun Qin
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jing Ma
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
35
|
Li H, Chen P, Wu Z, Lu Y, Peng J, Chen J, He W. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH 4SCN. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Wei B, Qin JH, Yang YZ, Xie YX, Ouyang XH, Song RJ. Electrochemical radical C(sp3)–H arylation of xanthenes with electron-rich arenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01714d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical C(sp3)–H arylation of xanthenes using a carbon anode and platinum cathode as the electrodes is disclosed.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
37
|
Wan H, Li D, Xia H, Yang L, Alhumade H, Yi H, Lei A. Synthesis of 1 H-indazoles by an electrochemical radical C sp2-H/N-H cyclization of arylhydrazones. Chem Commun (Camb) 2021; 58:665-668. [PMID: 34918720 DOI: 10.1039/d1cc04656j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of efficient and sustainable C-N bond-forming reactions to N-heterocyclic frameworks has been a long-standing interest in organic synthesis. In this work, we develop an electrochemical radical Csp2-H/N-H cyclization of arylhydrazones to 1H-indazoles. The electrochemical anodic oxidation approach was adopted to synthesize a variety of 1H-indazole derivatives in moderate to good yields. HFIP was not only employed as a solvent or the proton donor, but also can promote the formation of N free radicals. This synthetic methodology is operationally simple, and less expensive electrodes would be suitable for this chemistry.
Collapse
Affiliation(s)
- Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Dongting Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Huadan Xia
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liwen Yang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Xu H, Liu J, Nie F, Zhao X, Jiang Z. Metal-Free Hydropyridylation of Thioester-Activated Alkenes via Electroreductive Radical Coupling. J Org Chem 2021; 86:16204-16212. [PMID: 34617754 DOI: 10.1021/acs.joc.1c01526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An electrochemical hydropyridylation of thioester-activated alkenes with 4-cyanopyridines has been developed. The reactions experience a tandem electroreduction of both substrates on the cathode surface, protonation, and radical cross-coupling process, resulting in a variety of valuable pyridine variants, which contain a tertiary and even a quaternary carbon at the α-position of pyridines, in high yields. The employment of thioesters to the conjugated alkenes enables no requirement of catalyst and high temperature, representing a highly sustainable synthetic method.
Collapse
Affiliation(s)
- Hehuan Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Jiayu Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Feiyun Nie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhiyong Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China.,International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
39
|
Nasier A, Chang X, Guo C. Electrodimerization of N-Alkoxyamides for the Synthesis of Hydrazines. J Org Chem 2021; 86:16068-16076. [PMID: 34464121 DOI: 10.1021/acs.joc.1c01294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and valuable N-N dimerization reaction of N-alkoxyamides is reported under undivided electrolytic conditions. This electrochemical strategy provides a powerful way to access a wide range of advanced, highly functionalized hydrazines. Remarkably, an N-centered radical generated from the cleavage of the N-H bond under electrolytic conditions plays a crucial role in this transformation. Furthermore, various N-alkoxyamides bearing different substituents are suitable in this transformation, furnishing the corresponding hydrazines in up to 92% yield.
Collapse
Affiliation(s)
- Abudulajiang Nasier
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
Hou ZW, Mao ZY, Xu HC. Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds. Org Biomol Chem 2021; 19:8789-8793. [PMID: 34585716 DOI: 10.1039/d1ob01644j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of electrocatalytic synthetic methods hinges on efficient molecular catalysts. Triarylamines are well-known redox catalysts because of the good stability of their corresponding amine radical cations. Herein we show that tris(4-(tert-butyl)phenyl)amine decomposes unexpectedly during electrolysis in MeOH/THF to afford a tetraarylhydrazine, 1,1,2,2-tetrakis(4-(tert-butyl)phenyl)hydrazine. In addition, we have applied this tetraarylhydrazine, which is either preprepared or formed in situ from tris(4-(tert-butyl)phenyl)amine, as an electrocatalyst for the synthesis of imidazopyridines and related N-heteroaromatic compounds through intramolecular [3 + 2] annulation. This metal-free electrocatalytic method provides straightforward access to the N-heteroaromatic compounds from readily available materials without the need for external chemical oxidants.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, P. R. China
| | - Zhong-Yi Mao
- Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Chao Xu
- Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
41
|
Wu Y, Zeng L, Li H, Cao Y, Hu J, Xu M, Shi R, Yi H, Lei A. Electrochemical Palladium-Catalyzed Oxidative Sonogashira Carbonylation of Arylhydrazines and Alkynes to Ynones. J Am Chem Soc 2021; 143:12460-12466. [PMID: 34347455 DOI: 10.1021/jacs.1c06036] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative carbonylation using carbon monoxide has evolved as an attractive tool to valuable carbonyl-containing compounds, while mixing CO with a stoichiometric amount of a chemical oxidant especially oxygen is hazardous and limits its application in scale-up synthesis. By employing anodic oxidation, we developed an electrochemical palladium-catalyzed oxidative carbonylation of arylhydrazines with alkynes, which is regarded as an alternative supplement of the carbonylative Sonogashira reaction. Combining an undivided cell with constant current mode, oxygen-free conditions avoids the explosion hazard of CO. A diversity of ynones are efficiently obtained using accessible arylhydrazines and alkynes under copper-free conditions. A possible mechanism of the electrochemical Pd(0)/Pd(II) cycle is rationalized based upon cyclic voltammetry, kinetic studies, and intermediates experiments.
Collapse
Affiliation(s)
- Yong Wu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Haoran Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Yue Cao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Minghao Xu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
42
|
Zheng YT, Song J, Xu HC. Electrocatalytic Dehydrogenative Cyclization of 2-Vinylanilides for the Synthesis of Indoles. J Org Chem 2021; 86:16001-16007. [PMID: 34314192 DOI: 10.1021/acs.joc.1c00988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indole is prevalent in bioactive compounds and natural products. The development of efficient and sustainable methods to access this privileged structural scaffold has been a long-standing interest of synthetic chemists. Herein, we report an electrocatalytic method for the synthesis of indoles through dehydrogenative cyclization of 2-vinylanilides. The reactions employ an organic redox catalyst and do not require any external chemical oxidant, providing speedy and efficient access to 3-substituted and 2,3-disubstituted indoles.
Collapse
Affiliation(s)
- Yun-Tao Zheng
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|