1
|
Jiang M, Zhu H, Huang L, Luo D, Shi H, Xu Z, Wu N. A sequential Au(I)/TBAF-promoted rapid and selective functionalization of heteroarene N-oxides with alkynes. Chem Commun (Camb) 2025. [PMID: 39829242 DOI: 10.1039/d4cc06305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We present a rapid and versatile Au(I)-catalyzed strategy for functionalizing N-heteroarenes using TBAF as a nucleophile or base, enabling varied transformations. The method accommodates diverse substrates, offering excellent yields and functional group tolerance. Distinct reaction pathways highlight its adaptability, expanding chemical diversity for organic synthesis.
Collapse
Affiliation(s)
- Mengfei Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Huilong Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Lei Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Du Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Heping Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Nan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Zhang CJ, Sun Y, Gong J, Zhang H, Liu ZZ, Wang F, Chen JX, Qu JP, Kang YB. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations. Angew Chem Int Ed Engl 2025; 64:e202415496. [PMID: 39494965 DOI: 10.1002/anie.202415496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/05/2024]
Abstract
We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the β-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,β-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Zhen Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jin-Xiang Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Ushakov PY, Sukhorukov AY. Umpolung Approach to Aldol Products via Isoxazoline N-Oxides as Intermediates. J Org Chem 2024; 89:15590-15597. [PMID: 39393025 DOI: 10.1021/acs.joc.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
A two-step umpolung approach to the diastereoselective synthesis of aldols was developed, in which a conjugated nitroalkene is used as the synthetic equivalent of the enolonium cation, while a sulfur ylide acts as the equivalent of the α-carbinol anion. The resulting isoxazoline N-oxides undergo catalytic reductive cleavage to aldols under mild conditions at room temperature and under 1 atm hydrogen pressure. The efficiency of the method was demonstrated by the synthesis of a series of polysubstituted β-hydroxyketones that are difficult to synthesize using the classical aldol reaction. The developed approach allows for the regiodivergent assembly of aldols by selecting a nitroalkene isomer with the appropriate position of the C,C double bond.
Collapse
Affiliation(s)
- Pavel Yu Ushakov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Kokuev AO, Sukhorukov AY. Copper-Catalyzed Alkynylation of In Situ-Generated Azoalkenes: An Umpolung Approach to Pyrazoles. Org Lett 2024; 26:6999-7003. [PMID: 39116281 DOI: 10.1021/acs.orglett.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A straightforward umpolung approach to regioselectively N-protected polysubstituted pyrazoles starting from aromatic α-halohydrazones and terminal alkynes has been developed. In this process, azoalkenes generated in situ from α-halohydrazones are involved in the Cu(I)-catalyzed Michael addition with alkynes to give α-alkynyl-substituted hydrazones that cyclize to give the target pyrazoles in 37-85% yield. The method employs readily available starting materials and features good functional group compatibility (nitro, sulfonyl, cyano, trimethylsilyl, and primary bromoalkyl groups, esters, and alcohols are tolerated) and scalability.
Collapse
Affiliation(s)
- Aleksandr O Kokuev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Zhou J, Wang W, Zuo F, Liu S, Mosim Amin P, Zhong K, Bai R, Wang Y. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes. Angew Chem Int Ed Engl 2023; 62:e202302545. [PMID: 37856619 DOI: 10.1002/anie.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,β- and β,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.
Collapse
Affiliation(s)
- Junrui Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Weilin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Fenfang Zuo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Pathan Mosim Amin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Leong BJ, Folz JS, Bathe U, Clark DG, Fiehn O, Hanson AD. Fluoroacetate distribution, response to fluoridation, and synthesis in juvenile Gastrolobium bilobum plants. PHYTOCHEMISTRY 2022; 202:113356. [PMID: 35934105 DOI: 10.1016/j.phytochem.2022.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond. Bioinformatic analyses indicate that plants lack homologs of the only enzymes known to make a C-F bond, i.e., the Actinomycete flurorinases that form 5'-fluoro-5'-deoxyadenosine from S-adenosylmethionine and fluoride ion. To probe the origin of fluoroacetate in G. bilobum we first showed that fluoroacetate accumulates to millimolar levels in young leaves but not older leaves, stems or roots, that leaf fluoroacetate levels vary >20-fold between individual plants and are not markedly raised by sodium fluoride treatment. Young leaves were fed adenosine-13C-ribose, 13C-serine, or 13C-acetate to test plausible biosynthetic routes to fluoroacetate from S-adenosylmethionine, a C3-pyridoxal phosphate complex, or acetyl-CoA, respectively. Incorporation of 13C into expected metabolites confirmed that all three precursors were taken up and metabolized. Consistent with the bioinformatic evidence against an Actinomycete-type pathway, no adenosine-13C-ribose was converted to 13C-fluoroacetate; nor was the characteristic 4-fluorothreonine product of the Actinomycete pathway detected. Similarly, no 13C from acetate or serine was incorporated into fluoroacetate. While not fully excluding the hypothetical pathways that were tested, these negative labeling data imply that G. bilobum creates the C-F bond by an unprecedented biochemical reaction. Enzyme(s) that mediate such a reaction could be of great value in pharmaceutical and agrochemical manufacturing.
Collapse
Affiliation(s)
- Bryan J Leong
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Jacob S Folz
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Ulschan Bathe
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Jia H, Ritter T. α-Thianthrenium Carbonyl Species: The Equivalent of an α-Carbonyl Carbocation. Angew Chem Int Ed Engl 2022; 61:e202208978. [PMID: 35895980 PMCID: PMC9804271 DOI: 10.1002/anie.202208978] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Here we report an α-thianthrenium carbonyl species, as the equivalent of an α-carbonyl carbocation, which is generated by the radical conjugate addition of a trifluoromethyl thianthrenium salt to Michael acceptors. The reactivity allows for the synthesis of Cα -tetrasubstituted α- and β-amino acid analogues via a Ritter reaction by addition of acetonitrile. Addition of hydroxide, methoxide, and even fluoride can afford α-heteroatom substituted α-phenylpropanoates.
Collapse
Affiliation(s)
- Hao Jia
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
9
|
Jia H, Ritter T. α‐Thianthrenium Carbonyl Species: The Equivalent of an α‐Carbonyl Carbocation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Jia
- Max-Planck-Institute für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Department of Organic Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| |
Collapse
|
10
|
Nguyen NH, Oh SM, Park CM, Shin S. Ortho-selective C–H arylation of phenols with N-carboxyindoles under Brønsted acid- or Cu(i)-catalysis. Chem Sci 2022; 13:1169-1176. [PMID: 35211284 PMCID: PMC8790926 DOI: 10.1039/d1sc06157g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 01/25/2023] Open
Abstract
Control over chemo- and regioselectivity is a critical issue in the heterobiaryl synthesis via C–H oxidative coupling. To address this challenge, a strategy to invert the normal polarity of indoles in the heterobiaryl coupling was developed. With N-carboxyindoles as umpoled indoles, an exclusively ortho-selective coupling with phenols has been realized, employing a Brønsted acid- or Cu(i)-catalyst (as low as 0.01 mol%). A range of phenols and N-carboxyindoles coupled with exceptional efficiency and selectivity at ambient temperature and the substrates bearing redox-active aryl halides (–Br and –I) smoothly coupled in an orthogonal manner. Notably, preliminary examples of atropselective heterobiaryl coupling have been demonstrated, based on a chiral disulfonimide or a Cu(i)/chiral bisphosphine catalytic system. The reaction was proposed to occur through SN2′ substitution or a Cu(i)–Cu(iii) cycle, with Brønsted acid or Cu(i) catalysts, respectively. Control over chemo- and regioselectivity is a critical issue in the heterobiaryl synthesis via C–H oxidative coupling. To address this challenge, a strategy to invert the normal polarity of indoles was developed.![]()
Collapse
Affiliation(s)
- Nguyen H. Nguyen
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Soo Min Oh
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science and Technology), Ulsan 44919, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|