1
|
Yao Y, Fan D. Advances in MUC1 resistance to chemotherapy in pancreatic cancer. J Chemother 2024; 36:449-456. [PMID: 38006297 DOI: 10.1080/1120009x.2023.2282839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
The incidence of pancreatic cancer (PC), a highly fatal malignancy, is increasing every year. Chemotherapy is an important treatment for it in addition to surgery, yet most patients become resistant to chemotherapeutic agents within a few weeks of treatment initiation. MUC1 is a highly glycosylated transmembrane protein, and studies have shown that aberrantly glycosylated overexpression of MUC1 is involved in regulating the biology of chemoresistance in cancer cells. This article summarizes the mechanism of MUC1 in PC chemoresistance and reviews MUC1-based targeted therapies.
Collapse
Affiliation(s)
- Youhao Yao
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, PR China
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| | - Daguang Fan
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| |
Collapse
|
2
|
Gadi MR, Han J, Shen T, Fan S, Xiao Z, Li L. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 2024:10.1038/s41596-024-01051-6. [PMID: 39327537 DOI: 10.1038/s41596-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure-function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1-2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2-4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shuquan Fan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Zhongying Xiao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Guerreiro A, Compañón I, Lazaris FS, Labão-Almeida C, Oroz P, Ghirardello M, Marques MC, Corzana F, Bernardes GJL. Non-Natural MUC1 Glycopeptide Homogeneous Cancer Vaccine with Enhanced Immunogenicity and Therapeutic Activity. Angew Chem Int Ed Engl 2024:e202411009. [PMID: 39275921 DOI: 10.1002/anie.202411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide. This engineered antigen contains two non-natural amino acids and has an α-S-glycosidic bond, where sulfur replaces the conventional oxygen atom linking the peptide backbone to the sugar N-acetylgalactosamine. The glycopeptide is then specifically conjugated to the immunogenic protein carrier CRM197 (Cross-Reactive Material 197), a protein approved for human use. Conjugation involves selective reduction and re-bridging of a disulfide in CRM197, allowing the attachment of a single copy of MUC1. This strategy results in a chemically defined vaccine while maintaining both the structural integrity and immunogenicity of the protein carrier. The vaccine elicits a robust Th1-like immune response in mice and generates antibodies capable of recognizing human cancer cells expressing tumor-associated MUC1. When tested in mouse models of colon adenocarcinoma and pancreatic cancer, the vaccine is effective both as a prophylactic and therapeutic use, significantly delaying tumor growth. In therapeutic applications, improved outcomes were observed when the vaccine was combined with an anti-programmed cell death protein 1 (anti-PD-1) checkpoint inhibitor. Our strategy reduces batch-to-batch variability and enhances both immunogenicity and therapeutic potential. This site-specific approach disputes a prevailing dogma where glycoconjugate vaccines require multivalent display of antigens.
Collapse
Affiliation(s)
- Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
| | - Ismael Compañón
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Foivos S Lazaris
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Paula Oroz
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Marta C Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
4
|
Jiang B, Elkashif A, Coulter JA, Dunne NJ, McCarthy HO. Immunotherapy for HPV negative head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189138. [PMID: 38889878 DOI: 10.1016/j.bbcan.2024.189138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Head and neck cancer (HNSCC) is the 8th most common cancer in the UK, with incidence increasing due to lifestyle factors such as tobacco and alcohol abuse. HNSCC is an immune-suppressive disease characterised by impaired cytokine secretion and dysregulation of immune infiltrate. As such, immunotherapy is a potential treatment option, with therapeutic cancer vaccination demonstrating the greatest potential. The success of cancer vaccination is dependent on informed antigen selection: an ideal antigen must be either tumour-specific or tumour-associated, as well as highly immunogenic. Stratification of the patient population for antigen expression and validated biomarkers are also vital. This review focuses on the latest developments in immunotherapy, specifically the development of therapeutic vaccines, and highlights successes, potential drawbacks and areas for future development. Immunotherapy approaches considered for HNSCC include monoclonal antibodies (mAb), Oncolytic viral (OV) therapies, Immune Checkpoint Inhibitors (ICIs) and cancer vaccines.
Collapse
Affiliation(s)
- Binyumeng Jiang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Zhou SH, Zhang RY, Wen Y, Zou YK, Ding D, Bian MM, Cui HY, Guo J. Multifunctional Lipidated Protein Carrier with a Built-In Adjuvant as a Universal Vaccine Platform Potently Elevates Immunogenicity of Weak Antigens. J Med Chem 2024; 67:6822-6838. [PMID: 38588468 DOI: 10.1021/acs.jmedchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.
Collapse
Affiliation(s)
- Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yong-Ke Zou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Miao-Miao Bian
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hong-Ying Cui
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Deng P, Dong X, Wu Z, Hou X, Mao L, Guo J, Zhao W, Peng C, Zhang Z, Peng L. Development of Glycosylation-Modified DPPA-1 Compounds as Innovative PD-1/PD-L1 Blockers: Design, Synthesis, and Biological Evaluation. Molecules 2024; 29:1898. [PMID: 38675717 PMCID: PMC11054459 DOI: 10.3390/molecules29081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 μM and 101.9 μM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.
Collapse
Affiliation(s)
- Peng Deng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaodan Dong
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ziyuan Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China
| | - Xixi Hou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China;
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Chune Peng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China
| | - Lizeng Peng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
7
|
Bermejo IA, Guerreiro A, Eguskiza A, Martínez-Sáez N, Lazaris FS, Asín A, Somovilla VJ, Compañón I, Raju TK, Tadic S, Garrido P, García-Sanmartín J, Mangini V, Grosso AS, Marcelo F, Avenoza A, Busto JH, García-Martín F, Hurtado-Guerrero R, Peregrina JM, Bernardes GJL, Martínez A, Fiammengo R, Corzana F. Structure-Guided Approach for the Development of MUC1-Glycopeptide-Based Cancer Vaccines with Predictable Responses. JACS AU 2024; 4:150-163. [PMID: 38274250 PMCID: PMC10807005 DOI: 10.1021/jacsau.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy-entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen-antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development.
Collapse
Affiliation(s)
- Iris A. Bermejo
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ana Guerreiro
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ander Eguskiza
- Department
of Biotechnology, University of Verona, Verona 37134, Italy
| | - Nuria Martínez-Sáez
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
- Departamento
de Tecnología y Química Farmacéuticas, Universidad de Navarra, Pamplona 31008, Spain
| | - Foivos S. Lazaris
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Alicia Asín
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Víctor J. Somovilla
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ismael Compañón
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Tom K. Raju
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Srdan Tadic
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Pablo Garrido
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Josune García-Sanmartín
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Vincenzo Mangini
- Center
for
Biomolecular Nanotechnologies@UniLe, Istituto
Italiano di Tecnologia (IIT), Arnesano, Lecce 73010, Italy
| | - Ana S. Grosso
- Applied
Molecular Biosciences Unit UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica 2829-516, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Filipa Marcelo
- Applied
Molecular Biosciences Unit UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica 2829-516, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Alberto Avenoza
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Jesús H. Busto
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Fayna García-Martín
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine,
Faculty of Health Sciences, University of
Copenhagen, Copenhagen 2200, Denmark
- Fundación
ARAID, Zaragoza 50018, Spain
| | - Jesús M. Peregrina
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Alfredo Martínez
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Roberto Fiammengo
- Department
of Biotechnology, University of Verona, Verona 37134, Italy
- Center
for
Biomolecular Nanotechnologies@UniLe, Istituto
Italiano di Tecnologia (IIT), Arnesano, Lecce 73010, Italy
| | - Francisco Corzana
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| |
Collapse
|
8
|
Pifferi C, Aguinagalde L, Ruiz-de-Angulo A, Sacristán N, Baschirotto PT, Poveda A, Jiménez-Barbero J, Anguita J, Fernández-Tejada A. Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chem Sci 2023; 14:3501-3513. [PMID: 37006677 PMCID: PMC10055764 DOI: 10.1039/d2sc05639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The overexpression of aberrantly glycosylated tumor-associated mucin-1 (TA-MUC1) in human cancers makes it a major target for the development of anticancer vaccines derived from synthetic MUC1-(glyco)peptide antigens. However, glycopeptide-based subunit vaccines are weakly immunogenic, requiring adjuvants and/or additional immunopotentiating approaches to generate optimal immune responses. Among these strategies, unimolecular self-adjuvanting vaccine constructs that do not need coadministration of adjuvants or conjugation to carrier proteins emerge as a promising but still underexploited approach. Herein, we report the design, synthesis, immune-evaluation in mice, and NMR studies of new, self-adjuvanting and self-assembling vaccines based on our QS-21-derived minimal adjuvant platform covalently linked to TA-MUC1-(glyco)peptide antigens and a peptide helper T-cell epitope. We have developed a modular, chemoselective strategy that harnesses two distal attachment points on the saponin adjuvant to conjugate the respective components in unprotected form and high yields via orthogonal ligations. In mice, only tri-component candidates but not unconjugated or di-component combinations induced significant TA-MUC1-specific IgG antibodies able to recognize the TA-MUC1 on cancer cells. NMR studies revealed the formation of self-assembled aggregates, in which the more hydrophilic TA-MUC1 moiety gets exposed to the solvent, favoring B-cell recognition. While dilution of the di-component saponin-(Tn)MUC1 constructs resulted in partial aggregate disruption, this was not observed for the more stably-organized tri-component candidates. This higher structural stability in solution correlates with their increased immunogenicity and suggests a longer half-life of the construct in physiological media, which together with the enhanced antigen multivalent presentation enabled by the particulate self-assembly, points to this self-adjuvanting tri-component vaccine as a promising synthetic candidate for further development.
Collapse
Affiliation(s)
- Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Priscila Tonon Baschirotto
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Juan Anguita
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Inflammation and Macrophage Plasticity Laboratory, CIC BioGUNE, BRTA Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
9
|
Gadi MR, Chen C, Bao S, Wang S, Guo Y, Han J, Xiao W, Li L. Convergent chemoenzymatic synthesis of O-GalNAc rare cores 5, 7, 8 and their sialylated forms. Chem Sci 2023; 14:1837-1843. [PMID: 36819867 PMCID: PMC9931048 DOI: 10.1039/d2sc06925c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
All O-GalNAc glycans are derived from 8 cores with 2 or 3 monosaccharides linked via α- or β-glycosidic bonds. While chemical and chemoenzymatic syntheses of β-linked cores 1-4 and 6 and derived glycans have been well developed, the preparation of α-linked rare cores 5, 7, and 8 is challenging due to the presence of this 1,2-cis linkage. Meanwhile, the biosynthesis and functional roles of these structures are poorly understood. Herein, we synthesize 3 α-linked rare cores with exclusive α-configuration from a versatile precursor through multifaceted chemical modulations. Efficient regioselective α2-6sialylion of the rare cores was then achieved by Photobacterium damselae α2-6sialyltransferase-catalyzed reactions. These structures, together with β-linked cores 1-4 and 6, and their sialylated forms, were fabricated into a comprehensive O-GalNAc core microarray to profile the binding of clinically important GalNAc-specific lectins. It is found that only Tn, (sialyl-)core 5, and core 7 are the binders of WFL, VVL, and SBA, while DBA only recognized (sialyl-)core 5, and Jacalin is the only lectin that binds core 8. In addition, activity assays of human α-N-acetylgalactosaminide α2-6sialyltransferases (ST6GalNAcTs) towards the cores suggested that ST6GalNAc1 may be involved in the biosynthesis of previously identified sialyl-core 5 and sialyl-core 8 glycans. In conclusion, we provide efficient routes to access α-linked O-GalNAc rare cores and derived structures, which are valuable tools for functional glycomics studies of mucin O-glycans.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Congcong Chen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs Jinan 250101 China
| | - Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Yuxi Guo
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
10
|
Fallarini S, Papi F, Licciardi F, Natali F, Lombardi G, Maestrelli F, Nativi C. Niosomes as Biocompatible Scaffolds for the Multivalent Presentation of Tumor-Associated Antigens (TACAs) to the Immune System. Bioconjug Chem 2022; 34:181-192. [PMID: 36519843 PMCID: PMC9853506 DOI: 10.1021/acs.bioconjchem.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fully synthetic tumor-associated carbohydrate antigen (TACA)-based vaccines are a promising strategy to treat cancer. To overcome the intrinsic low immunogenicity of TACAs, the choice of the antigens' analogues and multivalent presentation have been proved to be successful. Here, we present the preparation, characterization, and in vitro screening of niosomes displaying multiple copies of the mucin antigen TnThr (niosomes-7) or of TnThr mimetic 1 (niosomes-2). Unprecedentedly, structural differences, likely related to the carbohydrate portions, were observed for the two colloidal systems. Both niosomal systems are stable, nontoxic and endowed with promising immunogenic properties.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department
of Pharmaceutical Sciences, University of
“Piemonte Orientale”, Novara 28100, Italy
| | - Francesco Papi
- Department
of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Federico Licciardi
- Department
of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Francesca Natali
- CNR-IOM
and INSIDE@ILL, c/o OGG,
71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Grazia Lombardi
- Department
of Pharmaceutical Sciences, University of
“Piemonte Orientale”, Novara 28100, Italy
| | | | | |
Collapse
|
11
|
Breast Cancer Vaccine Containing a Novel Toll-like Receptor 7 Agonist and an Aluminum Adjuvant Exerts Antitumor Effects. Int J Mol Sci 2022; 23:ijms232315130. [PMID: 36499455 PMCID: PMC9741412 DOI: 10.3390/ijms232315130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Mucin 1 (MUC1) has received increasing attention due to its high expression in breast cancer, in which MUC1 acts as a cancer antigen. Our group has been committed to the development of small-molecule TLR7 (Toll-like receptor 7) agonists, which have been widely investigated in the field of tumor immunotherapy. In the present study, we constructed a novel tumor vaccine (SZU251 + MUC1 + Al) containing MUC1 and two types of adjuvants: a TLR7 agonist (SZU251) and an aluminum adjuvant (Al). Immunostimulatory responses were first verified in vitro, where the vaccine promoted the release of cytokines and the expression of costimulatory molecules in mouse BMDCs (bone marrow dendritic cells) and spleen lymphocytes. Then, we demonstrated that SZU251 + MUC1 + Al was effective and safe against a tumor expressing the MUC1 antigen in both prophylactic and therapeutic schedules in vivo. The immune responses in vivo were attributed to the increase in specific humoral and cellular immunity, including antibody titers, CD4+, CD8+ and activated CD8+ T cells. Therefore, our vaccine candidate may have beneficial effects in the prevention and treatment of breast cancer patients.
Collapse
|
12
|
Hassannia H, Amiri MM, Ghaedi M, Sharifian RA, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers (Basel) 2022; 14:5827. [PMID: 36497309 PMCID: PMC9738141 DOI: 10.3390/cancers14235827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a new tumor associated antigen (TAA) which is overexpressed in several hematopoietic and solid malignancies. The present study aimed to produce and evaluate different fusion proteins of mouse ROR1 (mROR1) to enhance immunogenicity and protective efficacy of ROR1. Four ROR1 fusion proteins composed of extracellular region of mROR1, immunogenic fragments of TT as well as Fc region of mouse IgG2a were produced and employed to immunize Balb/C mice. Humoral and cellular immune responses and anti-tumor effects of these fusion proteins were evaluated using two different syngeneic murine ROR1+ tumor models. ROR1-specific antibodies were induced in all groups of mice. The levels of IFN-γ, IL-17 and IL-22 cytokines in culture supernatants of stimulated splenocytes were increased in all groups of immunized mice, particularly mice immunized with TT-mROR1-Fc fusion proteins. The frequency of ROR1-specific CTLs was higher in mice immunized with TT-mROR1-Fc fusion proteins. Finally, results of tumor challenge in immunized mice showed that immunization with TT-mROR1-Fc fusion proteins completely inhibited ROR1+ tumor cells growth in two different syngeneic tumor models until day 120 post tumor challenge. Our preclinical findings, for the first time, showed that our fusion proteins could be considered as a potential candidate vaccine for active immunotherapy of ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari P.O. Box 48157-33971, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Ramezan-Ali Sharifian
- Department of Hematology and Oncology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 14197-33141, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran P.O. Box 19839-69412, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| |
Collapse
|
13
|
León-Letelier RA, Katayama H, Hanash S. Mining the Immunopeptidome for Antigenic Peptides in Cancer. Cancers (Basel) 2022; 14:4968. [PMID: 36291752 PMCID: PMC9599891 DOI: 10.3390/cancers14204968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although harnessing the immune system for cancer therapy has shown success, response to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I and class II molecules. Remarkably, the immunopeptidome encompasses protein post-translation modifications (PTMs) that may not be evident from genome or transcriptome profiling. A case in point is citrullination, which has been demonstrated to induce a strong immune response. In this review, we cover how the immunopeptidome, with a special focus on PTMs, can be utilized to identify cancer-specific antigens for immunotherapeutic applications.
Collapse
Affiliation(s)
| | | | - Sam Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Ma W, Deng Y, Xu Z, Liu X, Chapla DG, Moremen KW, Wen L, Li T. Integrated Chemoenzymatic Approach to Streamline the Assembly of Complex Glycopeptides in the Liquid Phase. J Am Chem Soc 2022; 144:9057-9065. [PMID: 35544340 DOI: 10.1021/jacs.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosylation of proteins is a complicated post-translational modification. Despite the significant progress in glycoproteomics, accurate functions of glycoproteins are still ambiguous owing to the difficulty in obtaining homogeneous glycopeptides or glycoproteins. Here, we describe a streamlined chemoenzymatic method to prepare complex glycopeptides by integrating hydrophobic tag-supported chemical synthesis and enzymatic glycosylations. The hydrophobic tag is utilized to facilitate peptide chain elongation in the liquid phase and expeditious product separation. After removal of the tag, a series of glycans are installed on the peptides via efficient glycosyltransferase-catalyzed reactions. The general applicability and robustness of this approach are exemplified by efficient preparation of 16 well-defined SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated glucagon-like peptide-1. Our developed approach will open up a new range of easy access to various complex glycopeptides of biological importance.
Collapse
Affiliation(s)
- Wenjing Ma
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhou SH, Li YT, Zhang RY, Liu YL, You ZW, Bian MM, Wen Y, Wang J, Du JJ, Guo J. Alum Adjuvant and Built-in TLR7 Agonist Synergistically Enhance Anti-MUC1 Immune Responses for Cancer Vaccine. Front Immunol 2022; 13:857779. [PMID: 35371101 PMCID: PMC8965739 DOI: 10.3389/fimmu.2022.857779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
The tumor-associated antigen mucin 1 (MUC1) is an attractive target of antitumor vaccine, but its weak immunogenicity is a big challenge for the development of vaccine. In order to enhance immune responses against MUC1, herein, we conjugated small molecular toll-like receptor 7 agonist (TLR7a) to carrier protein BSA via MUC1 glycopeptide to form a three-component conjugate (BSA-MUC1-TLR7a). Furthermore, we combined the three-component conjugate with Alum adjuvant to explore their synergistic effects. The immunological studies indicated that Alum adjuvant and built-in TLR7a synergistically enhanced anti-MUC1 antibody responses and showed Th1-biased immune responses. Meanwhile, antibodies elicited by the vaccine candidate effectively recognized tumor cells and induced complement-dependent cytotoxicity. In addition, Alum adjuvant and built-in TLR7a synergistically enhanced MUC1 glycopeptide-specific memory CD8+ T-cell immune responses. More importantly, the vaccine with the binary adjuvant can significantly inhibit tumor growth and prolong the survival time of mice in the tumor challenge experiment. This novel vaccine construct provides an effective strategy to develop antitumor vaccines.
Collapse
Affiliation(s)
- Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yu-Ting Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yan-Ling Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zi-Wei You
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Miao-Miao Bian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|