1
|
Lee HJ, Maruoka K. Asymmetric phase-transfer catalysis. Nat Rev Chem 2024; 8:851-869. [PMID: 39385042 DOI: 10.1038/s41570-024-00642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 10/11/2024]
Abstract
Over the past three decades, chiral phase-transfer catalysts (PTCs) have emerged as highly successful organocatalysts in a diverse range of asymmetric reactions. A substantial number of chiral PTCs have now already been discovered and utilized in dependable routes to enantioenriched products. These extend beyond the classical cationic PTCs with the emergence of anionic phase-transfer catalysis and hydrogen-bonding phase-transfer catalysis providing new asymmetric synthetic approaches. Nevertheless, the application level of chiral PTCs in both academic and industrial processes is below our expectation. This Review highlights the notable advances in chiral PTCs, including challenges, limitations and efforts to overcome them. Following this, the potential for sustainable chiral PTCs is described with a focus on using photocatalysed, flow and electrochemical synthesis.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Kunsan National University, Gunsan, Republic of Korea.
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Champlin AT, Kwon NY, Ellman JA. Enantioselective S-Alkylation of Sulfenamides by Phase-Transfer Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408820. [PMID: 39058627 PMCID: PMC11514311 DOI: 10.1002/anie.202408820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5 : 2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.
Collapse
Affiliation(s)
| | | | - Jonathan A. Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| |
Collapse
|
3
|
Chen Z, Liu J, Ou W, Kato T, Wang Z, Chen Y, Liu Y, Maruoka K. Development of Axially Chiral Pyridylidene Amine Ligands and their Application in Pd-Catalyzed Enantioselective Allylic Substitution. J Org Chem 2024; 89:12800-12811. [PMID: 39159454 DOI: 10.1021/acs.joc.4c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A series of novel axially chiral pyridylidene amine (PYE) ligands has been developed, and their catalytic capability has been demonstrated in various highly efficient and enantioselective Pd-catalyzed asymmetric allylic substitutions. A density-functional theory (DFT) study explains the preferential enantiocontrol in the key transition states of the axially chiral PYE ligand-promoted Pd-catalyzed allylic alkylation.
Collapse
Affiliation(s)
- Zhikang Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiahao Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weiying Ou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Zhe Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yong Chen
- China National Analysis Center, Guangzhou 510070, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Sakai M, Fujio S, Imayoshi A, Sasamori T, Okada K, Imai Y, Hasegawa M, Tsubaki K. Synthesis and Optical Properties of Binaphthyl Derivatives with Comprehensive Introduction of Phenylethynyl Groups. Chem Asian J 2024; 19:e202400159. [PMID: 38794837 DOI: 10.1002/asia.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
In this study, compounds with phenylethynyl (PE) groups introduced at all of the possible positions of the methylene-bridged structure of the 1,1'-bi-2-naphthol backbone (3-PE to 8-PE) were synthesized. Compounds with four or six phenylethynyl groups (3,6-PE, 4,6-PE, 5,6-PE, 6,7-PE, and 3,4,6-PE) were also synthesized. The key reaction for the synthesis of these compounds was the Sonogashira reaction using halogen scaffolds. The new transformation methods include (1) selective bromination of the 5-position of the binaphthyl skeleton and (2) bromination of the 6-position and then iodination of the 4-position, followed by the Sonogashira reaction of iodine at the 4-position and lithiation and protonation of bromine at the 6-position. The optical properties of the compounds were evaluated. The extension of the π system greatly differed depending on the position of the phenylethynyl group. 4-PE, 4,6-PE, and 3,4,6-PE, in which the phenylethynyl groups were introduced in the extended direction of the naphthalene linkage axis, showed longer absorption and emission wavelengths and higher fluorescence quantum yields than the other compounds. In circularly polarized luminescence measurements, 7-PE showed a relatively large glum value, an interesting finding that reverses the sense.
Collapse
Affiliation(s)
- Misato Sakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Shinya Fujio
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Institute of Pure and Applied Sciences, and, Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Keita Okada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
5
|
Mairhofer C, Naderer D, Waser M. Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide. Beilstein J Org Chem 2024; 20:1510-1517. [PMID: 38978746 PMCID: PMC11228824 DOI: 10.3762/bjoc.20.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
We herein report the oxidative α-azidation of carbonyl compounds by using NaN3 in the presence of dibenzoyl peroxide catalyzed by tetrabutylammonium iodide (TBAI). By utilizing these readily available bulk chemicals a variety of cyclic β-ketocarbonyl derivatives can be efficiently α-azidated under operationally simple conditions. Control experiments support a mechanistic scenario involving in situ formation of an ammonium hypoiodite species which first facilitates the α-iodination of the pronucleophile, followed by a phase-transfer-catalyzed nucleophilic substitution by the azide. Furthermore, we also show that an analogous α-nitration by using NaNO2 under otherwise identical conditions is possible as well.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - David Naderer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
6
|
Nasiri B, Pasdar G, Zebrowski P, Röser K, Naderer D, Waser M. Towards an asymmetric β-selective addition of azlactones to allenoates. Beilstein J Org Chem 2024; 20:1504-1509. [PMID: 38978748 PMCID: PMC11228823 DOI: 10.3762/bjoc.20.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
We herein report the asymmetric organocatalytic addition of azlactones to allenoates. Upon using chiral quaternary ammonium salt catalysts, i.e., Maruoka's binaphthyl-based spirocyclic ammonium salts, the addition of various azlactones to allenoates proceeds in a β-selective manner with moderate levels of enantioselectivities (up to 83:17 er). Furthermore, the obtained products can be successfully engaged in nucleophilic ring opening reactions, thus giving highly functionalized α-amino acid derivatives.
Collapse
Affiliation(s)
- Behzad Nasiri
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Kurdistan, Iran
| | - Ghaffar Pasdar
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Paul Zebrowski
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Katharina Röser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - David Naderer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
7
|
Ohmatsu K, Truong DA, Morita S, Maruoka K, Ooi T. Catalytic 1,1-Cyanoalkylation of Electron-Deficient Olefins. Org Lett 2024; 26:4055-4058. [PMID: 38695395 DOI: 10.1021/acs.orglett.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A catalytic 1,1-dicarbofunctionalization of electron-deficient olefins was effected on the basis of the three-component coupling reactions involving olefins bearing vicinal electron-withdrawing groups, potassium cyanide, and an alkyl halide, which afforded geminally cyanoalkylated products in high yields via conjugate cyanation, 1,2-proton transfer, and enolate alkylation. The use of suitable chiral phase-transfer catalysts enabled asymmetric induction in this transformation.
Collapse
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Duc An Truong
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shohei Morita
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Ikai T, Mishima N, Matsumoto T, Miyoshi S, Oki K, Yashima E. 2,2'-Tethered Binaphthyl-Embedded One-Handed Helical Ladder Polymers: Impact of the Tether Length on Helical Geometry and Chiroptical Property. Angew Chem Int Ed Engl 2024; 63:e202318712. [PMID: 38253965 DOI: 10.1002/anie.202318712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Synthetic breakthroughs diversify the molecules and polymers available to chemists. We now report the first successful synthesis of a series of optically-pure 2,2'-tethered binaphthyl-embedded helical ladder polymers based on quantitative and chemoselective ladderization by the modified alkyne benzannulations using the 4-alkoxy-2,6-dimethylphenylethynyl group as the alkyne source, inaccessible by the conventional approach lacking the 2,6-dimethyl substituents. Due to the defect-free helix formation, the circular dichroism signal increased by more than 6 times the previously reported value. The resulting helical secondary structure can be fine-tuned by controlling the binaphthyl dihedral angle in the repeating unit with variations in the 2,2'-alkylenedioxy tethering groups by one carbon atom at a time. The optimization of the helical ladder structures led to a strong circularly polarized luminescence with a high fluorescence quantum yield (28 %) and luminescence dissymmetry factor (2.6×10-3 ).
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi, Saitama, 332-0012, Japan
| | - Namiki Mishima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takehiro Matsumoto
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sayaka Miyoshi
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kosuke Oki
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
9
|
Zhang Q, Meng X, Qu J, Zhao F, Liao X, Li Z, He Y, Zhang X, Cao Z. Conformer aggregates exhibit dual wavelength emissions on chiral binaphthyl-based triphenylethylenes and acetone detection. Chemistry 2023:e202303708. [PMID: 38088216 DOI: 10.1002/chem.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.
Collapse
Affiliation(s)
- Qing Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Jun Qu
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Fapeng Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoming Liao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zan Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Yuanchun He
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
10
|
Hasegawa S, Nakamura K, Soga K, Usui K, Manaka Y, Motokura K. Concerted Hydrosilylation Catalysis by Silica-Immobilized Cyclic Carbonates and Surface Silanols. JACS AU 2023; 3:2692-2697. [PMID: 37885589 PMCID: PMC10598827 DOI: 10.1021/jacsau.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Developing a method for creating a novel catalysis of organic molecules is essential because of the growing interest in organocatalysis. In this study, we found that cyclic carbonates immobilized on a nonporous or mesoporous silica support showed catalytic activity for hydrosilylation, which was not observed for the free cyclic carbonates, silica supports, or their physical mixture. Analysis of the effects of linker lengths and pore sizes on the catalytic activity and carbonate C=O stretching frequency revealed that the proximity of carbonates and surface silanols was crucial for synergistic hydrosilylation catalysis. A carbonate and silanol concertedly activated the silane and aldehyde for efficient hydride transfer. Density functional theory calculations on a model reaction system demonstrated that both the carbonate and silanol contributed to the stabilization of the transition state of hydride transfer, which resulted in a reasonable barrier height of 16.8 kcal mol-1. Furthermore, SiO2/carbonate(C4) enabled the hydrosilylation of an aldehyde with an amino group without catalyst poisoning, owing to the weak acidity of surface silanols, in sharp contrast to previously developed acid catalysts. This study demonstrates that immobilization on a solid support can convert inactive organic molecules into active and heterogeneous organocatalysts.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Keisuke Nakamura
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kosuke Soga
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kei Usui
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuichi Manaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
- Renewable
Energy Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-2-9 Machiikedai, Koriyama 963-0298, Japan
| | - Ken Motokura
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
11
|
Wu BS, Chao YW, Chen HS, Tsai CC. Desymmetrization of Cyclohexadienones through Phase-Transfer-Catalyzed Stereoselective Intramolecular Aza-Michael Addition with Chiral Sulfinamide Nucleophiles. J Org Chem 2023; 88:12835-12843. [PMID: 37562968 DOI: 10.1021/acs.joc.3c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This paper reports the desymmetrization of cyclohexadienones through stereoselective intramolecular aza-Michael addition with a tethered chiral sulfinamide nucleophile. The reaction was facilitated by phase-transfer catalysis and produced various nitrogen-containing bicyclic compounds with a yield of up to 93% and a diastereomeric ratio of up to >20:1.
Collapse
Affiliation(s)
- Bing-Syuan Wu
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Yu-Wei Chao
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Hong-Sing Chen
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Cheng-Che Tsai
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| |
Collapse
|
12
|
Kayukova L, Vologzhanina A, Dorovatovskii P, Yergaliyeva E, Uzakova A, Duisenali A. N-N(+) Bond-Forming Intramolecular Cyclization of O-Tosyloxy β-Aminopropioamidoximes and Ion Exchange Reaction for the Synthesis of 2-Aminospiropyrazolilammonium Chlorides and Hexafluorophosphates. Int J Mol Sci 2023; 24:11315. [PMID: 37511075 PMCID: PMC10379084 DOI: 10.3390/ijms241411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Our research area is related to the spiropyrazolinium-containingcompounds, which are insufficiently studied compared with pyrazoline-containing compounds. Nitrogen-containing azoniaspiromolecules have also been well studied. In drug design and other areas, they are a priori important structures, since rigid spirocyclic scaffolds with the reduced conformational entropy are able to organize a closely spaced area. Azoniaspirostructures are currently of wide practical interest as ionic liquids, current sources (membranes), structure-directing agents in organocatalysis, and in the synthesis of ordered ceramics. Our goal was the synthesis of 2-aminospiropyrazolilammonium chlorides and hexafluorophosphates. Our methodology is based on the tosylation of β-aminopropioamidoximes with six-membered N-heterocycles (piperidine, morpholine, thiomorpholine, and phenylpiperazine) at the β-position. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates were obtained by the reaction of double ion substitution in the reaction of toluenesulfonates of 2-aminospiropyrazolinium compounds with an ethereal solution of HCl in ethanol and with ammonium hexafluorophosphate in ethanol in quantitative yields of 55-97%. The physicochemical characteristics of the synthesized compounds and their IR and NMR spectra are presented. The obtained salts were additionally characterized by the single-crystal XRD analysis. The presence of both axial and equatorial conformations of spirocations in solids was confirmed. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates have weak in vitro antimicrobial activity on Gram-positive and Gram-negative bacterial lines.
Collapse
Affiliation(s)
- Lyudmila Kayukova
- JSC A. B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov St., Almaty 050010, Kazakhstan
| | - Anna Vologzhanina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., B-334, Moscow 119334, Russia
| | | | - Elmira Yergaliyeva
- JSC A. B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov St., Almaty 050010, Kazakhstan
| | - Asem Uzakova
- JSC A. B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov St., Almaty 050010, Kazakhstan
| | - Aidana Duisenali
- JSC A. B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov St., Almaty 050010, Kazakhstan
| |
Collapse
|
13
|
Champlin AT, Ellman JA. Preparation of Sulfilimines by Sulfur-Alkylation of N-Acyl Sulfenamides with Alkyl Halides. J Org Chem 2023; 88:7607-7614. [PMID: 37221855 PMCID: PMC10257216 DOI: 10.1021/acs.joc.3c00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sulfur alkylation of N-acyl sulfenamides with alkyl halides provides sulfilimines in 47% to 98% yields. A broad scope was established with a variety of aryl and alkyl sulfenamides, including for different N-acyl groups. Alkyl halides with different steric and electronic properties were effective inputs, including methyl, primary, secondary, benzyl, and propargyl halides. A proof-of-concept asymmetric phase-transfer alkylation was also demonstrated. A sulfilimine product was readily converted to an N-acyl and to a free sulfoximine, which represent important motifs in medicinal chemistry.
Collapse
Affiliation(s)
- Andrew T. Champlin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|