1
|
Guiotto M, Clayton A, Morgan R, Raffoul W, Hart A, Riehle M, di Summa P. Biogelx-IKVAV Is An Innovative Human Platelet Lysate-Adipose-Derived Stem Cells Delivery Strategy to Improve Peripheral Nerve Repair. Tissue Eng Part A 2024; 30:681-692. [PMID: 38482791 DOI: 10.1089/ten.tea.2023.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024] Open
Abstract
Adipose-derived stem cells (ADSC) are nowadays one of the most exploited cells in regenerative medicine. They are fast growing, capable of enhancing axonal elongation, support and locally stimulate Schwann cells (SCs), and protect de-innervated muscles from atrophy after a peripheral nerve injury. With the aim of developing a bio-safe, clinically translatable cell-therapy, we assessed the effect of ADSC pre-expanded with human platelet lysate in an in vivo rat model, delivering the cells into a 15 mm critical-size sciatic nerve defect embedded within a laminin-peptide-functionalized hydrogel (Biogelx-IKVAV) wrapped by a poly-ɛ-caprolactone (PCL) nerve conduit. ADSC retained their stemness, their immunophenotype and proliferative activity when tested in vitro. At 6 weeks post-implantation, robust regeneration was observed across the critical-size gap as evaluated by both the axonal elongation (anti-NF 200) and SC proliferation (anti-S100) within the human ADSC-IKVAV filled PCL conduit. All the other experimental groups manifested significantly lower levels of growth cone elongation. The histological gastrocnemius muscle analysis was comparable with no quantitative significant differences among the experimental groups. Taken together, these results suggest that ADSC encapsulated in Biogelx-IKVAV are a potential path to improve the efficacy of nerve regeneration. New perspectives can be pursued for the development of a fully synthetic bioengineered nerve graft for the treatment of peripheral nerve injury. Impact statement Human adipose-derived stem cells pre-expanded in vitro with human platelet lysate culture medium additive and encapsulated into BiogelX-IKVAV are a promising strategy to improve nerve regeneration through a critical nerve gap in rat model.
Collapse
Affiliation(s)
- Martino Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Andrew Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
- Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Mathis Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | - Pietro di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
2
|
Angelaki D, Kavatzikidou P, Fotakis C, Stratakis E, Ranella A. Laser-Structured Si and PLGA Inhibit the Neuro2a Differentiation in Mono- and Co-Culture with Glia. Tissue Eng Regen Med 2022; 20:111-125. [PMID: 36538193 PMCID: PMC9852401 DOI: 10.1007/s13770-022-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The first step towards a successful neural tissue engineering therapy is the development of an appropriate scaffold and the in vitro study of the cellular response onto it. METHODS Here, we fabricated nano- and micro- patterned Si surfaces via direct ultrafast laser irradiation, as well as their replicas in the biodegradable poly(lactide-co-glycolide), in order to use them as culture substrates for neuronal cells. The differentiation of neuro2a cells on the Si platforms and their replicas was studied both in a mono-culture and in a co-culture with glial cells (Schwann-SW10). RESULTS It was found that the substrate's roughness inhibits the differentiation of the neuronal cells even in the presence of the differentiation medium, and the higher the roughness is, the more the differentiation gets limited. CONCLUSION Our results highlight the importance of the substrate's topography for the controlled growth and differentiation of the neuronal cells and their further study via protein screening methods could shed light on the factors that lead to limited differentiation; thus, contributing to the long standing request for culture substrates that induce cells to differentiate.
Collapse
Affiliation(s)
- Despoina Angelaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| |
Collapse
|
3
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. ACTA ACUST UNITED AC 2020; 15:065006. [PMID: 32485704 DOI: 10.1088/1748-605x/ab98e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24060. Authors contributed equally to this work
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Askarzadeh N, Nazarpak MH, Mansoori K, Farokhi M, Gholami M, Mohammadi J, Mottaghitalab F. Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Cross-Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps. Macromol Biosci 2020; 20:e2000149. [PMID: 32627956 DOI: 10.1002/mabi.202000149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Herein, a bilayer cylindrical conduit (P-CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross-linked with N,N'-disuccinimidyl carbonate (DSC). The bilayer P-CA conduit is developed by combining the electrospinning and outer-inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross-linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P-CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P-CA conduit will be a promising construct for repairing sciatic nerves in a rat model.
Collapse
Affiliation(s)
- Neshat Askarzadeh
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, 1439957131, Iran
| | | | - Korosh Mansoori
- Physical medicine and Rehabilitation Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Science Research Center, Tehran University of Medical Sciences, Tehran, 141556451, Iran
| | - Javad Mohammadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, 141556451, Iran
| |
Collapse
|
7
|
Luong TD, Zoughaib M, Garifullin R, Kuznetsova S, Guler MO, Abdullin TI. In Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β-Cyclodextrin–Adamantane Complexation for Studying Cell-Instructive Peptide Environment. ACS APPLIED BIO MATERIALS 2019; 3:1116-1128. [DOI: 10.1021/acsabm.9b01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thai Duong Luong
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Svetlana Kuznetsova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mustafa O. Guler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
8
|
Faroni A, Workman VL, Saiani A, Reid AJ. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv Healthc Mater 2019; 8:e1900410. [PMID: 31348622 DOI: 10.1002/adhm.201900410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Despite advances in microsurgical techniques, treatment options to restore prior function following peripheral nerve injury remain unavailable, and autologous nerve grafting remains the therapy of choice. Recent experimental work has focused on the development of artificial constructs incorporating smart biomaterials and stem cells, aspiring to match/improve the outcomes of nerve autografting. Chemically stimulated human adipose-derived stem cells (dhASC) can improve nerve regeneration outcomes; however, these properties are lost when chemical stimulation is withdrawn, and survival rate upon transplantation is low. It is hypothesized that interactions with synthetic hydrogel matrices could maintain and improve neurotrophic characteristics of dhASC. dhASC are cultured on PeptiGel-Alpha 1 and PeptiGel-Alpha 2 self-assembling peptide hydrogels, showing comparable viability to collagen I control gels. Culturing dhASC on Alpha 1 and Alpha 2 substrates allow the maintenance of neurotrophic features, such as the expression of growth factors and neuroglial markers. Both Alpha 1 and Alpha 2 substrates are suitable for the culture of peripheral sensory neurons, permitting sprouting of neuronal extensions without the need of biological extracellular matrices, and preserving neuronal function. PeptiGel substrates loaded with hdASC are proposed as promising candidates for the development of tissue engineering therapies for the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
| | - Victoria L. Workman
- School of Materials & Manchester Institute of BiotechnologyFaculty of Science and EngineeringUniversity of Manchester Manchester M13 9PL UK
| | - Alberto Saiani
- School of Materials & Manchester Institute of BiotechnologyFaculty of Science and EngineeringUniversity of Manchester Manchester M13 9PL UK
| | - Adam J. Reid
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
- Department of Plastic Surgery & BurnsWythenshawe HospitalManchester University NHS Foundation TrustManchester Academic Health Science Centre Manchester M23 9LT UK
| |
Collapse
|
9
|
Jing W, Zuo D, Cai Q, Chen G, Wang L, Yang X, Zhong W. Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration. Exp Cell Res 2019; 375:80-91. [DOI: 10.1016/j.yexcr.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
|
10
|
Mauri E, Sacchetti A, Vicario N, Peruzzotti-Jametti L, Rossi F, Pluchino S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater Sci 2018; 6:501-510. [PMID: 29368775 DOI: 10.1039/c7bm01056g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of neural stem cells (NSCs) in cell therapy has become a powerful tool used for the treatment of central nervous system diseases, including traumatic brain and spinal cord injuries. However, a significant drawback is related to the limited viability after transplantation in situ. The design of three-dimensional (3D) scaffolds that are capable of resembling the architecture and physico-chemical features of an extracellular environment could be a suitable approach to improve cell survival and preserve their cellular active phase over time. In this study, we investigated NSC adhesion and proliferation in hydrogel systems. In particular, we evaluated the effect of RGD binding domains on cell fate within the polymeric scaffold. The introduction of a tripeptide via hydrogel chemical functionalization improved the percentage of proliferating cells until 8 days after seeding when compared to the unmodified scaffold. The beneficial effects of this 3D culture system was further evident when compared to a NSC monolayer (2D) culture, resulting in an approximately 40% increase in cells in the active phases at 4 and 8 days, and maintained a difference of 25% until 21 days after seeding.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Chung HH, Mireles M, Kwarta BJ, Gaborski TR. Use of porous membranes in tissue barrier and co-culture models. LAB ON A CHIP 2018; 18:1671-1689. [PMID: 29845145 PMCID: PMC5997570 DOI: 10.1039/c7lc01248a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Porous membranes enable the partitioning of cellular microenvironments in vitro, while still allowing physical and biochemical crosstalk between cells, a feature that is often necessary for recapitulating physiological functions. This article provides an overview of the different membranes used in tissue barrier and cellular co-culture models with a focus on experimental design and control of these systems. Specifically, we discuss how the structural, mechanical, chemical, and even the optical and transport properties of different membranes bestow specific advantages and disadvantages through the context of physiological relevance. This review also explores how membrane pore properties affect perfusion and solute permeability by developing an analytical framework to guide the design and use of tissue barrier or co-culture models. Ultimately, this review offers insight into the important aspects one must consider when using porous membranes in tissue barrier and lab-on-a-chip applications.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | |
Collapse
|
12
|
Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration. Biomater Sci 2018; 6:1299-1311. [PMID: 29725688 PMCID: PMC5978680 DOI: 10.1039/c8bm00260f] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral nerve injury is a common disease that affects more than 20 million people in the United States alone and remains a major burden to society. The current gold standard treatment for critical-sized nerve defects is autologous nerve graft transplantation; however, this method is limited in many ways and does not always lead to satisfactory outcomes. The limitations of autografts have prompted investigations into artificial neural scaffolds as replacements, and some neural scaffold devices have progressed to widespread clinical use; scaffold technology overall has yet to be shown to be consistently on a par with or superior to autografts. Recent advances in biomimetic scaffold technologies have opened up many new and exciting opportunities, and novel improvements in material, fabrication technique, scaffold architecture, and lumen surface modifications that better reflect biological anatomy and physiology have independently been shown to benefit overall nerve regeneration. Furthermore, biomimetic features of neural scaffolds have also been shown to work synergistically with other nerve regeneration therapy strategies such as growth factor supplementation, stem cell transplantation, and cell surface glycoengineering. This review summarizes the current state of neural scaffolds, highlights major advances in biomimetic technologies, and discusses future opportunities in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Luca A, Fonta C, Raffoul W, Summa P, Lacour S. In vitro evaluation of gel‐encapsulated adipose derived stem cells: Biochemical cues for in vivo peripheral nerve repair. J Tissue Eng Regen Med 2017; 12:676-686. [DOI: 10.1002/term.2486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- A.C. Luca
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for NeuroprostheticsÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - C.M. Fonta
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for NeuroprostheticsÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - W. Raffoul
- Department of Plastic, Reconstructive and Hand SurgeryUniversity Hospital of Lausanne (CHUV) Lausanne Switzerland
| | - P.G. Summa
- Department of Plastic, Reconstructive and Hand SurgeryUniversity Hospital of Lausanne (CHUV) Lausanne Switzerland
| | - S.P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for NeuroprostheticsÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
14
|
Yang R, Xu C, Wang T, Wang Y, Wang J, Quan D, Deng DYB. PTMAc-PEG-PTMAc hydrogel modified by RGDC and hyaluronic acid promotes neural stem cells' survival and differentiation in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra06614g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The enhancement of the biological properties of hydrogels by surface modifying with bioactive molecules is of great significance, especially for the treatment of central nervous system injury by combining engrafted cells.
Collapse
Affiliation(s)
- Ruirui Yang
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Caixia Xu
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Tao Wang
- PCFM Lab
- GD HPPC Lab
- Research Center of Engineering and Technology for Functional Biomaterials of Guangdong
- School of Chemistry
- Sun Yat-Sen University
| | - Yuanqi Wang
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Jingnan Wang
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Daping Quan
- PCFM Lab
- GD HPPC Lab
- Research Center of Engineering and Technology for Functional Biomaterials of Guangdong
- School of Chemistry
- Sun Yat-Sen University
| | - David Y. B. Deng
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Sun Yat-sen University
- Guangzhou 510080
- China
| |
Collapse
|
15
|
Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Biomacromolecules 2015; 17:225-36. [PMID: 26636618 DOI: 10.1021/acs.biomac.5b01328] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tunable erosion of polymeric materials is an important aspect of tissue engineering for reasons that include cell infiltration, controlled release of therapeutic agents, and ultimately to tissue healing. In general, the biological response to proteinaceous polymeric hydrogels is favorable (e.g., minimal inflammatory response). However, unlike synthetic polymers, achieving tunable erosion with natural materials is a challenge. Keratins are a class of intermediate filament proteins that can be obtained from several sources, including human hair, and have gained increasing levels of use in tissue engineering applications. An important characteristic of keratin proteins is the presence of a large number of cysteine residues. Two classes of keratins with different chemical properties can be obtained by varying the extraction techniques: (1) keratose by oxidative extraction and (2) kerateine by reductive extraction. Cysteine residues of keratose are "capped" by sulfonic acid and are unable to form covalent cross-links upon hydration, whereas cysteine residues of kerateine remain as sulfhydryl groups and spontaneously form covalent disulfide cross-links. Here, we describe a straightforward approach to fabricate keratin hydrogels with tunable rates of erosion by mixing keratose and kerateine. SEM imaging and mechanical testing of freeze-dried materials showed similar pore diameters and compressive moduli, respectively, for each keratose-kerateine mixture formulation (∼1200 kPa for freeze-dried materials and ∼1.5 kPa for hydrogels). However, the elastic modulus (G') determined by rheology varied in proportion with the keratose-kerateine ratios, as did the rate of hydrogel erosion and the release rate of thiol from the hydrogels. The variation in keratose-kerateine ratios also led to tunable control over release rates of recombinant human insulin-like growth factor 1.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States.,Department of Biomedical Engineering, University of Akron , Auburn Science and Engineering Center 275, West Tower, Akron, Ohio 44325, United States
| | - Ryan T Lee
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Junnan Gu
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Luke R Burnett
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Seth Tomblyn
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
16
|
Kingham PJ, Reid AJ, Wiberg M. Adipose-derived stem cells for nerve repair: hype or reality? Cells Tissues Organs 2015; 200:23-30. [PMID: 25825218 DOI: 10.1159/000369336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury is a relatively commonly occurring trauma which seriously compromises the quality of life for many individuals. There is a major need to devise new treatment strategies, and one possible approach is to develop cellular therapies to bioengineer new nerve tissue and/or modulate the endogenous regenerative mechanisms within the peripheral nervous system. In this short review we describe how stem cells isolated from adipose tissue could be a suitable element of this approach. We describe the possible mechanisms through which the stem cells might exert a positive influence on peripheral nerve regeneration. These include their ability to differentiate into cells resembling Schwann cells and their secretion of a plethora of neurotrophic growth factors. We also review the literature describing the effects of these cells when tested using in vivo peripheral nerve injury models.
Collapse
|
17
|
de Luca AC, Faroni A, Reid AJ. Dorsal root ganglia neurons and differentiated adipose-derived stem cells: an in vitro co-culture model to study peripheral nerve regeneration. J Vis Exp 2015. [PMID: 25742570 PMCID: PMC4354675 DOI: 10.3791/52543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.
Collapse
Affiliation(s)
| | - Alessandro Faroni
- Blond McIndoe Research Laboratories, Institute of Inflammation & Repair, The University of Manchester
| | - Adam J Reid
- Blond McIndoe Research Laboratories, Institute of Inflammation & Repair, The University of Manchester; University Hospital of South Manchester
| |
Collapse
|
18
|
de Luca AC, Lacour SP, Raffoul W, di Summa PG. Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration? Neural Regen Res 2015; 9:1943-8. [PMID: 25598773 PMCID: PMC4283273 DOI: 10.4103/1673-5374.145366] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury is a serious problem affecting significantly patients’ life. Autografts are the “gold standard” used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.
Collapse
Affiliation(s)
- Alba C de Luca
- EPFL, Centre for Neuroprosthetics, Laboratory for Soft Bioelectronic Interfaces, Station 17, 1015 Lausanne, Switzerland
| | - Stephanie P Lacour
- EPFL, Centre for Neuroprosthetics, Laboratory for Soft Bioelectronic Interfaces, Station 17, 1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Pietro G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
19
|
di Summa P, de Luca A, Raffoul W, Giacalone F, Bertolini M. Tissue-engineered constructs for peripheral nerve repair: current research concepts and future perspectives. ACTA ACUST UNITED AC 2015. [DOI: 10.4103/2347-9264.160889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Naghdi P, Tiraihi T, Ganji F, Darabi S, Taheri T, Kazemi H. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol-RGD hydrogel with tenascin. J Tissue Eng Regen Med 2014; 10:199-208. [DOI: 10.1002/term.1958] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/27/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Pejman Naghdi
- Shefa Neuroscience Research Centre; Khatam Al-Anbia Hospital; Tehran Iran
- Department of Anatomical Sciences, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Taki Tiraihi
- Shefa Neuroscience Research Centre; Khatam Al-Anbia Hospital; Tehran Iran
- Department of Anatomical Sciences, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Fariba Ganji
- Department of Chemical Engineering, Faculty of Chemical Engineering; Tarbiat Modares University; Tehran Iran
| | - Shehram Darabi
- Department of Anatomy, School of Medicine; Qazvin University of Medical Sciences; Qazvin Iran
| | - Taher Taheri
- Shefa Neuroscience Research Centre; Khatam Al-Anbia Hospital; Tehran Iran
| | - Hadi Kazemi
- Shefa Neuroscience Research Centre; Khatam Al-Anbia Hospital; Tehran Iran
| |
Collapse
|
21
|
Faroni A, Smith RJ, Reid AJ. Adipose derived stem cells and nerve regeneration. Neural Regen Res 2014; 9:1341-6. [PMID: 25221589 PMCID: PMC4160863 DOI: 10.4103/1673-5374.137585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/25/2022] Open
Abstract
Injuries to peripheral nerves are common and cause life-changing problems for patients alongside high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacrificing a section of nerve from elsewhere in the body to provide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacrifice of a functional nerve. Stem cells are prime candidates as accelerators of regeneration in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Richard Jp Smith
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK ; Department of Plastic Surgery & Burns, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|