1
|
Hamon M, Cheng HM, Johnson M, Yanagawa N, Hauser PV. Effect of Hypoxia on Branching Characteristics and Cell Subpopulations during Kidney Organ Culture. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120801. [PMID: 36551007 PMCID: PMC9774677 DOI: 10.3390/bioengineering9120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
During early developmental stages, embryonic kidneys are not fully vascularized and are potentially exposed to hypoxic conditions, which is known to influence cell proliferation and survival, ureteric bud branching, and vascularization of the developing kidney. To optimize the culture conditions of in vitro cultured kidneys and gain further insight into the effect of hypoxia on kidney development, we exposed mouse embryonic kidneys isolated at E11.5, E12.5, and E13.5 to hypoxic and normal culture conditions and compared ureteric bud branching patterns, the growth of the progenitor subpopulation hoxb7+, and the expression patterns of progenitor and differentiation markers. Branching patterns were quantified using whole organ confocal imaging and gradient-vector-based analysis. In our model, hypoxia causes an earlier expression of UB tip cell markers, and a delay in stalk cell marker gene expression. The metanephric mesenchyme (MM) exhibited a later expression of differentiation marker FGF8, marking a delay in nephron formation. Hypoxia further delayed the expression of stroma cell progenitor markers, a delay in cortical differentiation markers, as well as an earlier expression of medullary and ureteral differentiation markers. We conclude that standard conditions do not apply universally and that tissue engineering strategies need to optimize suitable culture conditions for each application. We also conclude that adapting culture conditions to specific aspects of organ development in tissue engineering can help to improve individual stages of tissue generation.
Collapse
Affiliation(s)
- Morgan Hamon
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| | - Hsiao-Min Cheng
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ming Johnson
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter V. Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| |
Collapse
|
2
|
Gontran E, Loarca L, El Kassis C, Bouzhir L, Ayollo D, Mazari-Arrighi E, Fuchs A, Dupuis-Williams P. Self-Organogenesis from 2D Micropatterns to 3D Biomimetic Biliary Trees. Bioengineering (Basel) 2021; 8:112. [PMID: 34436115 PMCID: PMC8389215 DOI: 10.3390/bioengineering8080112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIMS Globally, liver diseases account for 2 million deaths per year. For those with advanced liver disease the only curative approach is liver transplantation. However, less than 10% of those in need get a liver transplant due to limited organ availability. To circumvent this challenge, there has been a great focus in generating a bioengineered liver. Despite its essential role in liver functions, a functional biliary system has not yet been developed. In this framework, exploration of epithelial cell self-organogenesis and microengineering-driven geometrical cell confinement allow to envision the bioengineering of a functional biomimetic intrahepatic biliary tract. APPROACH three-dimensional (3D) bile ducts were built in vitro by restricting cell adhesion to two-dimensional (2D) patterns to guide cell self-organization. Tree shapes mimicking the configuration of the human biliary system were micropatterned on glass slides, restricting cell attachment to these areas. Different tree geometries and culture conditions were explored to stimulate self-organogenesis of normal rat cholangiocytes (NRCs) used as a biliary cell model, either alone or in co-culture with human umbilical endothelial cells (HUVECs). RESULTS Pre-seeding the micropatterns with HUVECs promoted luminogenesis with higher efficiency to yield functional branched biliary tubes. Lumen formation, apico-basal polarity, and preservation of the cholangiocyte phenotype were confirmed. Moreover, intact and functional biliary structures were detached from the micropatterns for further manipulation. CONCLUSION This study presents physiologically relevant 3D biliary duct networks built in vitro from 2D micropatterns. This opens opportunities for investigating bile duct organogenesis, physiopathology, and drug testing.
Collapse
Affiliation(s)
- Emilie Gontran
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- INSERM U-1279, Gustave Roussy, F-94805 Villejuif, France
| | - Lorena Loarca
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Cyrille El Kassis
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Latifa Bouzhir
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Dmitry Ayollo
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Elsa Mazari-Arrighi
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Alexandra Fuchs
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Pascale Dupuis-Williams
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- ESPCI Paris, Université PSL, F-75005 Paris, France
| |
Collapse
|
3
|
Nishikawa M, Sakai Y, Yanagawa N. Design and strategy for manufacturing kidney organoids. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Ono Y, Nakase I, Matsumoto A, Kojima C. Rapid optical tissue clearing using poly(acrylamide‐co‐styrenesulfonate) hydrogels for three‐dimensional imaging. J Biomed Mater Res B Appl Biomater 2019; 107:2297-2304. [DOI: 10.1002/jbm.b.34322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/12/2018] [Accepted: 01/05/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yuta Ono
- Department of Applied ChemistryGraduate School of Engineering, Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka, 599‐8531 Japan
| | - Ikuhiko Nakase
- Department of Biological ScienceGraduate School of Science, Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka, 599‐8531 Japan
| | - Akikazu Matsumoto
- Department of Applied ChemistryGraduate School of Engineering, Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka, 599‐8531 Japan
| | - Chie Kojima
- Department of Applied ChemistryGraduate School of Engineering, Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku, Sakai, Osaka, 599‐8531 Japan
| |
Collapse
|
5
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
6
|
Organ In Vitro Culture: What Have We Learned about Early Kidney Development? Stem Cells Int 2015; 2015:959807. [PMID: 26078765 PMCID: PMC4452498 DOI: 10.1155/2015/959807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
When Clifford Grobstein set out to study the inductive interaction between tissues in the developing embryo, he developed a method that remained important for the study of renal development until now. From the late 1950s on, in vitro cultivation of the metanephric kidney became a standard method. It provided an artificial environment that served as an open platform to study organogenesis. This review provides an introduction to the technique of organ culture, describes how the Grobstein assay and its variants have been used to study aspects of mesenchymal induction, and describes the search for natural and chemical inducers of the metanephric mesenchyme. The review also focuses on renal development, starting with ectopic budding of the ureteric bud, ureteric bud branching, and the generation of the nephron and presents the search for stem cells and renal progenitor cells that contribute to specific structures and tissues during renal development. It also presents the current use of Grobstein assay and its modifications in regenerative medicine and tissue engineering today. Together, this review highlights the importance of ex vivo kidney studies as a way to acquire new knowledge, which in the future can and will be implemented for developmental biology and regenerative medicine applications.
Collapse
|