1
|
Nuytten G, De Geest BG, De Beer T. Relevance of controlled cooling and freezing phases in T-cell cryopreservation. Cryobiology 2024; 116:104907. [PMID: 38768801 DOI: 10.1016/j.cryobiol.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
When cells are cryopreserved, they go through a freezing process with several distinct phases (i.e., cooling until nucleation, ice nucleation, ice crystal growth and cooling to a final temperature). Conventional cell freezing approaches often employ a single cooling rate to describe and optimize the entire freezing process, which neglects its complexity and does not provide insight into the effects of the different freezing phases. The aim of this work was to elucidate the impact of each freezing phase by varying different process parameters per phase. Hereto, spin freezing was used to freeze Jurkat T cells in either a Me2SO-based or Me2SO-free formulation. The cooling rates before ice nucleation and after total ice crystallization impacted cell viability, resulting in viability ranging from 26.7% to 52.8% for the Me2SO-free formulation, and 22.5%-42.6% for the Me2SO-based formulation. Interestingly, the degree of supercooling upon nucleation did not exhibit a significant effect on cell viability in this work. However, the rate of ice crystal formation emerged as a crucial factor, with viability ranging from 2.4% to 53.2% for the Me2SO-free formulation, and 0.3%-53.2% for the Me2SO-based formulation, depending on the freezing rate. A morphological study of the cells post-cryopreservation was performed using confocal microscopy, and it was found that cytoskeleton integrity and cell volume were impacted, depending on the formulation-process parameter combination. These findings underscore the importance of scrutinizing all cooling and freezing phases, as each phase impacted post-thaw viability in a distinct way, depending of the specific formulation used.
Collapse
Affiliation(s)
- Gust Nuytten
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Thomas De Beer
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| |
Collapse
|
2
|
Huang Z, Liu W, Ma T, Zhao H, He X, Liu B. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose. Biopreserv Biobank 2023; 21:417-426. [PMID: 36001824 DOI: 10.1089/bio.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | - Xiaowen He
- Origincell Technology Group Co., Shanghai, China
| | - Baolin Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Optimizing Bull Semen Cryopreservation Media Using Multivariate Statistics Approaches. Animals (Basel) 2023; 13:ani13061077. [PMID: 36978618 PMCID: PMC10044293 DOI: 10.3390/ani13061077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Cryo-injury reduces post-thaw semen quality. Extender components play a protective role, but existing experimental approaches do not elucidate interactions among extender components, semen samples, and post-thaw quality. To identify optimal concentrations for 12 extender ingredients, we ran 122 experiments with an I-optimal completely random design using a large dataset from our previous study. We obtained a maximum predicted total motility of 70.56% from an I-optimal design and 73.75% from a Monte Carlo simulation. Individual bull variations were significant and interacted with extenders independently. 67% of bulls reliably preferred extender formulations to reach maximum motility. Multifactor analysis suggests that some antioxidants may offer superior protection over others. Partial least squares path modeling (PLS-PM) found the highest positive loadings for glutathione in the antioxidant class, glycerol in the CPA class, and fructose in the basic compounds class. The optimal ranges for milk, water, and ethylene glycol were extremely narrow. Egg yolk, cholesterol-loaded cyclodextrin, and nerve growth factor had medium-loading impacts. PLS-PM showed that CPA, osmoregulators, and basic components were the most efficient contributors to motility, while the antioxidant and extracellular protectant classes had less efficiency. Thus, ingredients, concentrations, and interactions of extender compounds are critical to extender formulation, especially when using multiple compounds with the same function.
Collapse
|
4
|
Machine learning and hypothesis driven optimization of bull semen cryopreservation media. Sci Rep 2022; 12:22328. [PMID: 36567337 PMCID: PMC9790888 DOI: 10.1038/s41598-022-25104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/24/2022] [Indexed: 12/26/2022] Open
Abstract
Cryopreservation provides a critical tool for dairy herd genetics management. Due to widely varying inter- and within-bull post thaw fertility, recent research on cryoprotectant extender medium has not dramatically improved suboptimal post-thaw recovery in industry. This progress is stymied by the interactions between samples and the many components of extender media and is often compounded by industry irrelevant sample sizes. To address these challenges, here we demonstrate blank-slate optimization of bull sperm cryopreservation media by supervised machine learning. We considered two supervised learning models: artificial neural networks and Gaussian process regression (GPR). Eleven media components and initial concentrations were identified from publications in bull semen cryopreservation, and an initial 200 extender-post-thaw motility pairs were used to train and 32 extender-post-thaw motility pairs to test the machine learning algorithms. The median post-thaw motility after coupling differential evolution with GPR the increased from 52.6 ± 6.9% to 68.3 ± 6.0% at generations 7 and 17 respectively, with several media performing dramatically better than control media counterparts. This is the first study in which machine learning was used to determine the best combination of constituents to optimize bull sperm cryopreservation media, and provides a template for optimization in other cell types.
Collapse
|
5
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
6
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 2021; 35:529-545. [PMID: 34427899 DOI: 10.1007/s40259-021-00494-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects-cardiovascular, neurological, gastrointestinal, and allergic-in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies. Interest in developing alternatives to DMSO has resulted in the evaluation of a variety of sugars, proteins, polymers, amino acids, and other small molecules and osmolytes as well as modalities to efficiently enable cellular uptake of these cryoprotectants. However, the DMSO-free cryopreservation of NK and T cells remains difficult. They represent heterogeneous cell populations that are sensitive to freezing and thawing. As a result, clinical use of cryopreserved cell-therapy products has not moved past the use of DMSO. Here, we present the state of the art in the development and use of cryopreservation options that do not contain DMSO toward clinical solutions to enable the global deployment of safer adoptively transferred cell-based therapies.
Collapse
|
8
|
Hornberger K, Li R, Duarte ARC, Hubel A. Natural deep eutectic systems for nature-inspired cryopreservation of cells. AIChE J 2021; 67:e17085. [PMID: 34321676 PMCID: PMC8315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural deep eutectic systems (NADES) are emerging as potential cryoprotective agents (CPA) for cell preservation. In this investigation, we develop an optimized CPA formulation using trehalose-glycerol NADES (T:G) diluted in Normosol-R and supplemented with isoleucine. Differential scanning calorimetry (DSC) is used to define the thermophysical properties of NADES-based solutions, and Raman spectroscopy is used to characterize the effect of NADES on ice formation and hydrogen bonding. Jurkat cells are cryopreserved in each solution, and post-thaw cell recovery, apoptosis, and growth are quantified. Raman spectra and heat maps show that NADES suppresses both ice formation and dehydration of the nonfrozen region. Supplementing NADES with isoleucine does not affect the solution's thermophysical properties but significantly improves the cells' survival and proliferation post-thaw. The study indicates that thermophysical properties of CPA solutions alone cannot predict optimal cell survival, suggesting that stabilization of biological structures by CPAs may play a role in successful cryopreservation.
Collapse
Affiliation(s)
- Kathlyn Hornberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Ana Rita C. Duarte
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Hornberger K, Li R, Duarte ARC, Hubel A. Natural deep eutectic systems for
nature‐inspired
cryopreservation of cells. AIChE J 2020. [DOI: 10.1002/aic.17085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kathlyn Hornberger
- Department of Biomedical Engineering University of Minnesota Minneapolis Minnesota USA
| | - Rui Li
- Department of Biomedical Engineering University of Minnesota Minneapolis Minnesota USA
| | - Ana Rita C. Duarte
- Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica Portugal
| | - Allison Hubel
- Department of Mechanical Engineering University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
10
|
Raju R, Bryant SJ, Wilkinson BL, Bryant G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj 2020; 1865:129749. [PMID: 32980500 DOI: 10.1016/j.bbagen.2020.129749] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cryopreservation is a key method of preservation of biological material for both medical treatments and conservation of endangered species. In order to avoid cellular damage, cryopreservation relies on the addition of a suitable cryoprotective agent (CPA). However, the toxicity of CPAs is a serious concern and often requires rapid removal on thawing which is time consuming and expensive. SCOPE OF REVIEW The principles of Cryopreservation are reviewed and recent advances in cryopreservation methods and new CPAs are described. The importance of understanding key biophysical properties to assess the cryoprotective potential of new non-toxic compounds is discussed. MAJOR CONCLUSIONS Knowing the biophysical properties of a particular cell type is crucial for developing new cryopreservation protocols. Similarly, understanding how potential CPAs interact with cells is key for optimising protocols. For example, cells with a large osmotically inactive volume may require slower addition of CPAs. Similarly, a cell with low permeability may require a longer incubation time with the CPA to allow adequate penetration. Measuring these properties allows efficient optimisation of cryopreservation protocols. GENERAL SIGNIFICANCE Understanding the interplay between cells and biophysical properties is important not just for developing new, and better optimised, cryopreservation protocols, but also for broader research into topics such as dehydration and desiccation tolerance, chilling and heat stress, as well as membrane structure and function.
Collapse
Affiliation(s)
- Rekha Raju
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Brendan L Wilkinson
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
11
|
Sugiyama H, Shiokaramatsu M, Kagihiro M, Fukumori K, Horiguchi I, Kino-Oka M. Apoptosis-based method for determining lot sizes in the filling of human-induced pluripotent stem cells. J Tissue Eng Regen Med 2020; 14:1641-1651. [PMID: 32886861 DOI: 10.1002/term.3127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 11/05/2022]
Abstract
Standardization in process design and operation is needed in the commercial production of human-induced pluripotent stem (hiPS) cells. Lot sizing in the filling of hiPS cells into containers, a part of the preservation process, also needs to be standardized because of the temporal changes in cell quality during the process. Here, we present an apoptosis-based method that can determine lot sizes in the filling of hiPS cells considering temporal changes in cell quality. Two indicators were developed for (i) the cell quality change using reactive oxygen species (ROS) measurement and (ii) the cell survival and probability of filling success, which are parts of the lot-sizing problem. Using computational simulation, a map out of the optimal lot size was produced that minimized the expected production costs at a given cell demand and an acceptable change in cell quality. At a filling temperature of 4°C, the largest possible lot size was calculated as 6 L (corresponding to a filling time of 125 min). The results of a sensitivity analysis recommended cold filling or the addition of an antioxidant. The presented method is effective to determine the lot size considering the change in cell quality during filling. The study uniquely combines the experimental results with mathematical modeling and computational simulation techniques. The map out of the optimal lot size could guide the development of industrial filling processes of hiPS cells.
Collapse
Affiliation(s)
- Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Shiokaramatsu
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | - Ikki Horiguchi
- Department of Biotechnology, Osaka University, Suita, Japan
| | | |
Collapse
|
12
|
Pi CH, Dosa PI, Hubel A. Differential Evolution for the Optimization of DMSO-Free Cryoprotectants: Influence of Control Parameters. J Biomech Eng 2020; 142:071006. [PMID: 31891381 PMCID: PMC10782869 DOI: 10.1115/1.4045815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/25/2019] [Indexed: 12/28/2022]
Abstract
This study presents the influence of control parameters including population (NP) size, mutation factor (F), crossover (Cr), and four types of differential evolution (DE) algorithms including random, best, local-to-best, and local-to-best with self-adaptive (SA) modification for the purpose of optimizing the compositions of dimethylsufloxide (DMSO)-free cryoprotectants. Post-thaw recovery of Jurkat cells cryopreserved with two DMSO-free cryoprotectants at a cooling rate of 1 °C/min displayed a nonlinear, four-dimensional structure with multiple saddle nodes, which was a suitable training model to tune the control parameters and select the most appropriate type of differential evolution algorithm. Self-adaptive modification presented better performance in terms of optimization accuracy and sensitivity of mutation factor and crossover among the four different types of algorithms tested. Specifically, the classical type of differential evolution algorithm exhibited a wide acceptance to mutation factor and crossover. The optimization performance is more sensitive to mutation than crossover and the optimization accuracy is proportional to the population size. Increasing population size also reduces the sensitivity of the algorithm to the value of the mutation factor and crossover. The analysis of optimization accuracy and convergence speed suggests larger population size with F > 0.7 and Cr > 0.3 are well suited for use with cryopreservation optimization purposes. The tuned differential evolution algorithm is validated through finding global maximums of other two DMSO-free cryoprotectant formulation datasets. The results of these studies can be used to help more efficiently determine the optimal composition of multicomponent DMSO-free cryoprotectants in the future.
Collapse
Affiliation(s)
- Chia-Hsing Pi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Peter I. Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455
| |
Collapse
|
13
|
Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy 2020; 22:291-300. [PMID: 32220549 DOI: 10.1016/j.jcyt.2020.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study examined the freezing responses of peripheral blood mononuclear cells (PBMCs) and specific white blood cell subsets contained therein when cryopreserved in three combinations of osmolytes composed of sugars, sugar alcohols and amino acids. METHODS A differential evolution algorithm with multiple objectives was used to optimize cryoprotectant composition and thus the post-thaw recoveries for both helper and cytotoxicity T cells simultaneously. RESULTS The screening of various formulations using a differential evolution algorithm showed post-thaw recoveries greater than 80% for the two subsets of T cells. The phenotypes and viabilities of PBMC subsets were characterized using flow cytometry. Significant differences between the post-thaw recovery for helper T cells and cytotoxic T cells were observed. Statistical models were used to analyze the importance of individual osmolytes and interactions between post-thaw recoveries of three subsets of T cell including helper T cells, cytotoxic T cells and natural killer T cells. The statistical model indicated that the preferred concentration levels of osmolytes and interaction modes were distinct between the three subsets studied. PBMCs were cultured for 72 h post-thaw to determine the stability of the cells. Because post-thaw apoptosis is a significant concern for lymphocytes, apoptosis of helper T cell and cytotoxic T cells frozen in a DMSO-free cryoprotectant was analyzed immediately post-thaw and 24 h post-thaw. Both cell types showed a decrease in cell viability 24 h post-thaw compared with immediately post-thaw. Helper T cell viability dropped 17%, and cytotoxic T cells had a 10% drop in viability. Immediately post-thaw, both cell types had >30% of cells in early apoptosis, but after 24 h the number of cells in early apoptosis decreased to below 20%. CONCLUSION This study helped us identify the freezing responses of different human PBMC subsets using combinations of osmolytes.
Collapse
|
14
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Li R, Hornberger K, Dutton JR, Hubel A. Cryopreservation of Human iPS Cell Aggregates in a DMSO-Free Solution-An Optimization and Comparative Study. Front Bioeng Biotechnol 2020; 8:1. [PMID: 32039188 PMCID: PMC6987262 DOI: 10.3389/fbioe.2020.00001] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/03/2020] [Indexed: 01/28/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an important cell source for regenerative medicine products. Effective methods of preservation are critical to their clinical and commercial applications. The use of a dimethyl sulfoxide (DMSO)-free solution containing all non-toxic molecules offers an effective alternative to the conventional DMSO and alleviates pain points associated with the use of DMSO in the cryopreservation of hiPSCs. Both hiPSCs and cells differentiated from them are commonly multicellular systems, which are more sensitive to stresses of freezing and thawing than single cells. In this investigation, low-temperature Raman spectroscopy visualized freezing behaviors of hiPSC aggregates in different solutions. These aggregates exhibited sensitivity to undercooling in DMSO-containing solutions. We demonstrated the ability to replace DMSO with non-toxic molecules, improve post-thaw cell survival, and reduce sensitivity to undercooling. An accelerated optimization process capitalized on the positive synergy among multiple DMSO-free molecules, which acted in concert to influence ice formation and protect cells during freezing and thawing. A differential evolution algorithm was used to optimize the multi-variable, DMSO-free preservation protocol in 8 experiments. hiPSC aggregates frozen in the optimized solution did not exhibit the same sensitivity to undercooling as those frozen in non-optimized solutions or DMSO, indicating superior adaptability of the optimized solution to different freezing modalities and unplanned deviations. This investigation shows the importance of optimization, explains the mechanisms and advantages of a DMSO-free solution, and enables not only improved cryopreservation of hiPSCs but potentially other cell types for translational regenerative medicine.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kathlyn Hornberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Allison Hubel
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Yang J, Gao L, Liu M, Sui X, Zhu Y, Wen C, Zhang L. Advanced Biotechnology for Cell Cryopreservation. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00227-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCell cryopreservation has evolved as an important technology required for supporting various cell-based applications, such as stem cell therapy, tissue engineering, and assisted reproduction. Recent times have witnessed an increase in the clinical demand of these applications, requiring urgent improvements in cell cryopreservation. However, cryopreservation technology suffers from the issues of low cryopreservation efficiency and cryoprotectant (CPA) toxicity. Application of advanced biotechnology tools can significantly improve post-thaw cell survival and reduce or even eliminate the use of organic solvent CPAs, thus promoting the development of cryopreservation. Herein, based on the different cryopreservation mechanisms available, we provide an overview of the applications and achievements of various biotechnology tools used in cell cryopreservation, including trehalose delivery, hydrogel-based cell encapsulation technique, droplet-based cell printing, and nanowarming, and also discuss the associated challenges and perspectives for future development.
Collapse
|
17
|
Kim MM, Audet J. On-demand serum-free media formulations for human hematopoietic cell expansion using a high dimensional search algorithm. Commun Biol 2019; 2:48. [PMID: 30729186 PMCID: PMC6358607 DOI: 10.1038/s42003-019-0296-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Substitution of serum and other clinically incompatible reagents is requisite for controlling product quality in a therapeutic cell manufacturing process. However, substitution with chemically defined compounds creates a complex, large-scale optimization problem due to the large number of possible factors and dose levels, making conventional process optimization methods ineffective. We present a framework for high-dimensional optimization of serum-free formulations for the expansion of human hematopoietic cells. Our model-free approach utilizes evolutionary computing principles to drive an experiment-based feedback control platform. We validate this method by optimizing serum-free formulations for first, TF-1 cells and second, primary T-cells. For each cell type, we successfully identify a set of serum-free formulations that support cell expansions similar to the serum-containing conditions commonly used to culture these cells, by experimentally testing less than 1 × 10-5 % of the total search space. We also demonstrate how this iterative search process can provide insights into factor interactions that contribute to supporting cell expansion.
Collapse
Affiliation(s)
- Michelle M. Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9 Canada
| | - Julie Audet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5 Canada
| |
Collapse
|
18
|
Müllers Y, Meiser I, Stracke F, Riemann I, Lautenschläger F, Neubauer JC, Zimmermann H. Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation. PLoS One 2019; 14:e0211382. [PMID: 30682146 PMCID: PMC6347223 DOI: 10.1371/journal.pone.0211382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
Cryopreservation is an essential tool to meet the increasing demand for stem cells in medical applications. To ensure maintenance of cell function upon thawing, the preservation of the actin cytoskeleton is crucial, but so far there is little quantitative data on the influence of cryopreservation on cytoskeletal structures. For this reason, our study aims to quantitatively describe cryopreservation induced alterations to F-actin in adherent human mesenchymal stem cells, as a basic model for biomedical applications. Here we have characterised the actin cytoskeleton on single-cell level by calculating the circular standard deviation of filament orientation, F-actin content, and average filament length. Cryo-induced alterations of these parameters in identical cells pre and post cryopreservation provide the basis of our investigation. Differences between the impact of slow-freezing and vitrification are qualitatively analyzed and highlighted. Our analysis is supported by live cryo imaging of the actin cytoskeleton via two photon microscopy. We found similar actin alterations in slow-frozen and vitrified cells including buckling of actin filaments, reduction of F-actin content and filament shortening. These alterations indicate limited functionality of the respective cells. However, there are substantial differences in the frequency and time dependence of F-actin disruptions among the applied cryopreservation strategies; immediately after thawing, cytoskeletal structures show least disruption after slow freezing at a rate of 1°C/min. As post-thaw recovery progresses, the ratio of cells with actin disruptions increases, particularly in slow frozen cells. After 120 min of recovery the proportion of cells with an intact actin cytoskeleton is higher in vitrified than in slow frozen cells. Freezing at 10°C/min is associated with a high ratio of impaired cells throughout the post-thawing culture.
Collapse
Affiliation(s)
- Yannik Müllers
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
| | - Ina Meiser
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
| | - Frank Stracke
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
| | - Iris Riemann
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
| | - Franziska Lautenschläger
- Division of Cytoskeletal Fibers, Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, Germany
- Chair for Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Julia C. Neubauer
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
- Fraunhofer Project Centre for Stem Cell Process Engineering, Neunerplatz 2, Würzburg, Germany
| | - Heiko Zimmermann
- Department of Cryo- and Stem Cell Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, Sulzbach, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Saarbruecken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
19
|
Pi CH, Yu G, Dosa PI, Hubel A. Characterizing modes of action and interaction for multicomponent osmolyte solutions on Jurkat cells. Biotechnol Bioeng 2019; 116:631-643. [PMID: 30475391 DOI: 10.1002/bit.26880] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
This study examined the post-thaw recovery of Jurkat cells cryopreserved in three combinations of five osmolytes including trehalose, sucrose, glycerol, mannitol, and creatine. Cellular response was characterized using low-temperature Raman spectroscopy, and variation of post-thaw recovery was analyzed using statistical modeling. Combinations of osmolytes displayed distinct trends of post-thaw recovery, and a nonlinear relationship between compositions and post-thaw recovery was observed, suggesting interactions not only between different solutes but also between solutes and cells. The post-thaw recovery for optimized cryoprotectants in different combinations of osmolytes at a cooling rate of 1°C/min was comparable to that measured with 10% dimethyl sulfoxide. Statistical modeling was used to understand the importance of individual osmolytes as well as interactions between osmolytes on post-thaw recovery. Both higher concentrations of glycerol and certain interactions between sugars and glycerol were found to typically increase the post-thaw recovery. Raman images showed the influence of osmolytes and combinations of osmolytes on ice crystal shape, which reflected the interactions between osmolytes and water. Differences in the composition also influenced the presence or absence of intracellular ice formation, which could also be detected by Raman. These studies help us understand the modes of action for cryoprotective agents in these osmolyte solutions.
Collapse
Affiliation(s)
- Chia-Hsing Pi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Peter I Dosa
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
20
|
Pi CH, Yu G, Petersen A, Hubel A. Characterizing the "sweet spot" for the preservation of a T-cell line using osmolytes. Sci Rep 2018; 8:16223. [PMID: 30385865 PMCID: PMC6212455 DOI: 10.1038/s41598-018-34638-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
This study examined the post-thaw recovery of Jurkat cells cryopreserved in single osmolyte solutions containing sucrose, glycerol or isoleucine, as well as in a combination of the three osmolytes. Cell response was determined using low temperature Raman Spectroscopy and variation in post-thaw recovery with composition was analyzed using statistical modeling. Post-thaw recovery of Jurkat cells in single osmolyte was low. A combination of the osmolytes displayed a non-linear relationship between composition and post-thaw recovery, suggesting that interactions exist between the different solutes. The post-thaw recovery for an optimized multicomponent solution was comparable to that observed using 10% dimethyl sulfoxide and a cooling rate of 1 °C/min. Statistical modeling was used to characterize the importance of each osmolyte in the combination and test for interactions between osmolytes. Higher concentrations of glycerol increase post-thaw recovery and interactions between sucrose and glycerol, as well as sucrose and isoleucine improve post-thaw recovery. Raman images clearly demonstrated that damaging intracellular ice formation was observed more often in the presence of single osmolytes as well as non-optimized multi-component solution compositions.
Collapse
Affiliation(s)
- Chia-Hsing Pi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA
| | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA.
| |
Collapse
|
21
|
Stacey GN, Connon CJ, Coopman K, Dickson AJ, Fuller B, Hunt CJ, Kemp P, Kerby J, Man J, Matejtschuk P, Moore H, Morris J, Oreffo ROC, Slater N, Ward S, Wiggins C, Zimmermann H. Preservation and stability of cell therapy products: recommendations from an expert workshop. Regen Med 2017; 12:553-564. [DOI: 10.2217/rme-2017-0073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
If the field of regenerative medicine is to deliver therapies, rapid expansion and delivery over considerable distances to large numbers of patients is needed. This will demand efficient stabilization and shipment of cell products. However, cryopreservation science is poorly understood by life-scientists in general and in recent decades only limited progress has been made in the technology of preservation and storage of cells. Rapid translation of new developments to a broader range of cell types will be vital, as will assuring a deeper knowledge of the fundamental cell biology relating to successful preservation and recovery of cell cultures. This report presents expert consensus on these and other issues which need to be addressed for more efficient delivery of cell therapies.
Collapse
Affiliation(s)
- Glyn N Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Che J Connon
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Karen Coopman
- Chemical Engineering, Loughborough University, Loughborough, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Barry Fuller
- Department of Surgery, University College London, London, UK
| | - Charles J Hunt
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Kemp
- Intercytex Ltd & HairClone, Manchester, UK
| | - Julie Kerby
- Cell Therapy Manufacturing Development, Pfizer, Cambridge, UK
| | - Jennifer Man
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Matejtschuk
- Standardisation Science, National Institute for Biological Standards and Control (NIBSC) a centre of the MHRA, South Mimms, Hertfordshire, UK
| | - Harry Moore
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | - Richard OC Oreffo
- Centre for Human Development, Stem Cells & Regeneration, University of Southampton, Southampton, UK
| | - Nigel Slater
- The Bioscience Engineering Group, University of Cambridge, Cambridge, UK
| | | | - Claire Wiggins
- National Health Service – Blood & Transplant, Watford, UK
| | - Heiko Zimmermann
- Fraunhofer-Institute for Biomedical Engineering, Sulzbach, Germany
- Department of Molecular & Cellular Biotechnology/Nanotechnology, Saarland University, Saarbrücken, Germany
- Department of Marine Sciences, Universidad Católica del Norte, Antafogasta/Coquimbo, Chile
| |
Collapse
|
22
|
Pollock K, Samsonraj RM, Dudakovic A, Thaler R, Stumbras A, McKenna DH, Dosa PI, van Wijnen AJ, Hubel A. Improved Post-Thaw Function and Epigenetic Changes in Mesenchymal Stromal Cells Cryopreserved Using Multicomponent Osmolyte Solutions. Stem Cells Dev 2017; 26:828-842. [PMID: 28178884 DOI: 10.1089/scd.2016.0347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current methods for freezing mesenchymal stromal cells (MSCs) result in poor post-thaw function, which limits the clinical utility of these cells. This investigation develops a novel approach to preserve MSCs using combinations of sugars, sugar alcohols, and small-molecule additives. MSCs frozen using these solutions exhibit improved post-thaw attachment and a more normal alignment of the actin cytoskeleton compared to cells exposed to dimethylsulfoxide (DMSO). Osteogenic and chondrogenic differentiation assays show that cells retain their mesenchymal lineage properties. Genomic analysis indicates that the different freezing media evaluated have different effects on the levels of DNA hydroxymethylation, which are a principal epigenetic mark and a key step in the demethylation of CpG doublets. RNA sequencing and quantitative real time-polymerase chain reaction validation demonstrate that transcripts for distinct classes of cytoprotective genes, as well as genes related to extracellular matrix structure and growth factor/receptor signaling are upregulated in experimental freezing solutions compared to DMSO. For example, the osmotic regulator galanin, the antiapoptotic marker B cell lymphoma 2, as well as the cell surface adhesion molecules CD106 (vascular cell adhesion molecule 1) and CD54 (intracellular adhesion molecule 1) are all elevated in DMSO-free solutions. These studies validate the concept that DMSO-free solutions improve post-thaw biological functions and are viable alternatives for freezing MSCs. These novel solutions promote expression of cytoprotective genes, modulate the CpG epigenome, and retain the differentiation ability of MSCs, suggesting that osmolyte-based freezing solutions may provide a new paradigm for therapeutic cell preservation.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | - Amel Dudakovic
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Roman Thaler
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Aron Stumbras
- 3 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 4 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 5 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | | | - Allison Hubel
- 6 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
23
|
Pollock K, Yu G, Moller-Trane R, Koran M, Dosa PI, McKenna DH, Hubel A. Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival. Tissue Eng Part C Methods 2016; 22:999-1008. [PMID: 27758133 DOI: 10.1089/ten.tec.2016.0284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is demand for non-dimethyl sulfoxide (DMSO) cryoprotective agents that maintain cell viability without causing poor postthaw function or systemic toxicity. The focus of this investigation involves expanding our understanding of multicomponent osmolyte solutions and their ability to preserve cell viability during freezing. Controlled cooling rate freezing, Raman microscopy, and differential scanning calorimetry (DSC) were utilized to evaluate the differences in recovery and ice crystal formation behavior for solutions containing multiple cryoprotectants, including sugars, sugar alcohols, and small molecule additives. Postthaw recovery of mesenchymal stem cells (MSCs) in solutions containing multiple osmolytes have been shown to be comparable or better than that of MSCs frozen in 10% DMSO at 1°C/min when the solution composition is optimized. Maximum postthaw recovery was observed in these multiple osmolyte solutions with incubation times of up to 2 h before freezing. Raman images demonstrate large ice crystal formation in cryopreserved cells incubated for shorter periods of time (∼30 min), suggesting that longer permeation times are needed for these solutions. Recovery was dependent upon the concentration of each component in solution, and was not strongly correlated with osmolarity. It is noteworthy that the postthaw recovery varied significantly with the composition of solutions containing the same three components and this variation exhibited an inverted U-shape behavior, indicating that there may be a "sweet spot" for different combinations of osmolytes. Raman images of freezing behavior in different solution compositions were consistent with the observed postthaw recovery. Phase change behavior (solidification patterns and glass-forming tendency) did not differ for solutions with similar osmolarity, but differences in postthaw recovery suggest that biological, not physical, methods of protection are at play. Lastly, molecular substitution of glucose (a monosaccharide) for sucrose (a disaccharide) resulted in a significant drop in recovery. Taken together, the information from these studies increases our understanding of non-DMSO multicomponent cryoprotective solutions and the manner by which they enhance postthaw recovery.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Guanglin Yu
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Ralph Moller-Trane
- 3 Department of Ophthalmology, University of Wisconsin , Madison, Wisconsin
| | - Marissa Koran
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 4 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 5 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Allison Hubel
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|