1
|
Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, Deng X. The bioelectrical properties of bone tissue. Animal Model Exp Med 2023; 6:120-130. [PMID: 36856186 PMCID: PMC10158952 DOI: 10.1002/ame2.12300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/18/2022] [Indexed: 03/02/2023] Open
Abstract
Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanze Meng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
2
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
3
|
Heuschkel MA, Babler A, Heyn J, van der Vorst EPC, Steenman M, Gesper M, Kappel BA, Magne D, Gouëffic Y, Kramann R, Jahnen-Dechent W, Marx N, Quillard T, Goettsch C. Distinct role of mitochondrial function and protein kinase C in intimal and medial calcification in vitro. Front Cardiovasc Med 2022; 9:959457. [PMID: 36204585 PMCID: PMC9530266 DOI: 10.3389/fcvm.2022.959457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Vascular calcification (VC) is a major risk factor for cardiovascular morbidity and mortality. Depending on the location of mineral deposition within the arterial wall, VC is classified as intimal and medial calcification. Using in vitro mineralization assays, we developed protocols triggering both types of calcification in vascular smooth muscle cells (SMCs) following diverging molecular pathways. Materials and methods and results Human coronary artery SMCs were cultured in osteogenic medium (OM) or high calcium phosphate medium (CaP) to induce a mineralized extracellular matrix. OM induces osteoblast-like differentiation of SMCs-a key process in intimal calcification during atherosclerotic plaque remodeling. CaP mimics hyperphosphatemia, associated with chronic kidney disease-a risk factor for medial calcification. Transcriptomic analysis revealed distinct gene expression profiles of OM and CaP-calcifying SMCs. OM and CaP-treated SMCs shared 107 differentially regulated genes related to SMC contraction and metabolism. Real-time extracellular efflux analysis demonstrated decreased mitochondrial respiration and glycolysis in CaP-treated SMCs compared to increased mitochondrial respiration without altered glycolysis in OM-treated SMCs. Subsequent kinome and in silico drug repurposing analysis (Connectivity Map) suggested a distinct role of protein kinase C (PKC). In vitro validation experiments demonstrated that the PKC activators prostratin and ingenol reduced calcification triggered by OM and promoted calcification triggered by CaP. Conclusion Our direct comparison results of two in vitro calcification models strengthen previous observations of distinct intracellular mechanisms that trigger OM and CaP-induced SMC calcification in vitro. We found a differential role of PKC in OM and CaP-calcified SMCs providing new potential cellular and molecular targets for pharmacological intervention in VC. Our data suggest that the field should limit the generalization of results found in in vitro studies using different calcification protocols.
Collapse
Affiliation(s)
- Marina A. Heuschkel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Jonas Heyn
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research, Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja Steenman
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
| | - Maren Gesper
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ben A. Kappel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Magne
- ICBMS UMR CNRS 5246, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yann Gouëffic
- Department of Vascular Surgery, Vascular Center, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thibaut Quillard
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
- PHY-OS Laboratory, INSERM UMR 1238, Nantes University of Medicine, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Ataie M, Nourmohammadi J, Seyedjafari E. Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. Int J Biol Macromol 2022; 206:861-874. [PMID: 35314263 DOI: 10.1016/j.ijbiomac.2022.03.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Three dimensional (3D) substrates based on natural and synthetic polymers enhance the osteogenic and mechanical properties of the bone tissue engineering scaffolds. Here, a novel bioactive composite scaffolds from polycaprolactone /kappa-carrageenan were developed for bone regeneration applications. 3D PCL scaffolds were fabricated by 3D printing method followed by coating with carboxymethyl kappa-carrageenan. This organic film was used to create calcium and strontium phosphate layers via a modified alternate soaking process in CaCl 2 /SrCl 2 and Na2HPO4 solutions in which calcium ions were replaced by strontium, with different amounts of strontium in the solutions. Various characterization techniques were executed to analyze the effects of strontium ion on the scaffold properties. The morphological results demonstrated the highly porous with interconnected pores and uniform pore sizes scaffolds. It was indicated that the highest crystallinity and compressive strength were obtained when 100% CaCl2 was replaced by SrCl2 in the solution (P-C-Sr). Incorporation of Sr onto the structure increased the degradation rate of the scaffolds. Mesenchymal stem cells (MSCs) culture on the scaffolds showed that Sr effectively improved attachment and viability of the MSCs and accelerated osteogenic differentiation as revealed by Alkaline phosphatase activity, calcium content and Real Time-Reverse transcription polymerase chain reaction assays.
Collapse
Affiliation(s)
- Maryam Ataie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Cell-Based Double-Screening Method to Identify a Reliable Candidate for Osteogenesis-Targeting Compounds. Biomedicines 2022; 10:biomedicines10020426. [PMID: 35203635 PMCID: PMC8962348 DOI: 10.3390/biomedicines10020426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as a cell-based sensor that does not always reflect the activation of the osteogenic phenotype. In the present study, we used the MC3T3-E1 cell line stably transfected with the green fluorescent protein (GFP) reporter gene driven by a fragment of type I collagen promoter (Col-1a1GFP-MC3T3-E1) to evaluate a double-screening system to identify osteogenic inducible compounds using a combination of a cell-based reporter assay and detection of alkaline phosphatase (ALP) activity. Col-1a1GFP-MC3T3-E1 cells were cultured in an osteogenic induction medium after library screening of 1280 pharmacologically active compounds (Lopack1280). After 7 days, GFP fluorescence was measured using a microplate reader. After 14 days of osteogenic induction, the cells were stained with ALP. Library screening using the Col-1a1/GFP reporter and ALP staining assay detected three candidates with significant osteogenic induction ability. Furthermore, leflunomide, one of the three detected candidates, significantly promoted new bone formation in vivo. Therefore, this double-screening method could identify candidates for osteogenesis-targeting compounds more reliably than conventional methods.
Collapse
|
6
|
Liu S, Li D, Chen X, Jiang L. Biomimetic cuttlebone polyvinyl alcohol/carbon nanotubes/hydroxyapatite aerogel scaffolds enhanced bone regeneration. Colloids Surf B Biointerfaces 2021; 210:112221. [PMID: 34838414 DOI: 10.1016/j.colsurfb.2021.112221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Inspired by the ordered porous nanostructure of bone, biomimetic functionalization porous biomaterial could be considered as promising substitutes for bone regeneration. To realize the relevant biomimetic porous structure, polyvinyl alcohol (PVA)-based biomimetic cuttlebone aerogel scaffold which simultaneously contained modified carbon nanotubes (MCNTs) and hydroxyapatite (HAP) was first prepared using a one-step rapid freeze-drying method. By adjusting the MCNTs contents, both the surface hydrophilicity and the mechanical properties of the scaffold could be improved concurrently. Besides, the PVA/MCNTs/HAP enhanced the adhesion, differentiation and gene expression of osteogenic markers performances of MC3T3-E1 cells. Furthermore, the aerogel scaffolds were implanted into the calvarial defect model of SD IGS Rat to evaluate osteogenic performance in vivo. The Micro-CT characterization and bone content theoretical analysis after 8 weeks together indicated that the PVA/MCNTs/HAP aerogel scaffolds could accelerate bone regeneration without the contribution of endogenous cytokines. The unique biomimetic porous structure, superior mechanical properties and excellent bone regeneration capacity of PVA/MCNTs/HAP aerogel scaffolds made them potential materials for bone regeneration.
Collapse
Affiliation(s)
- Sudan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191,China.
| | - Xiangmei Chen
- Centre Infect Disease, School Basic Medicine Science, Health Science Centre, Peking University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| |
Collapse
|
7
|
Shen S, He X, Chen X, Dong L, Cheng K, Weng W. Enhanced osteogenic differentiation of mesenchymal stem cells on P(VDF-TrFE) layer coated microelectrodes. J Biomed Mater Res B Appl Biomater 2021; 109:2227-2236. [PMID: 34080765 DOI: 10.1002/jbm.b.34884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Electrical stimulation has been proved to be critical to regulate cell behavior. But, cell behavior is also susceptible to multiple parameters of the adverse interferences such as surface current, electrochemical reaction products, and non-uniform compositions, which often occur during direct electric stimulation. To effectively prevent the adverse interferences, a novel piezoelectric poly(vinylidene fluoride-trfluoroethylene)(P(VDF-TrFE)) layer was designed to coat onto the indium tin oxide (ITO) planar microelectrode. We found the electrical stimulation was able to regulate the osteogenic differentiation of mesenchymal stem cells (MSCs) through calcium-mediated PKC signaling pathway. Meanwhile, the surface charge of the designed P(VDF-TrFE) coating layer could be easily controlled by the pre-polarization process, which was demonstrated to trigger integrin-mediated FAK signaling pathway, finally up-regulating the osteogenic differentiation of MSCs. Strikingly, the crosstalk in the downstream of the two signaling cascades further strengthened the ERK pathway activation for osteogenic differentiation of MSCs. This P(VDF-TrFE) layer coated electrical stimulation microelectrodes therefore provide a distinct strategy to manipulate multiple-elements of biomaterial surface to regulate stem cell fate commitment.
Collapse
Affiliation(s)
- Shuxian Shen
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Xiaoyi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, China
| | - Lingqing Dong
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| |
Collapse
|
8
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, Jin Y, Ma H, Zhang J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomedicine 2018; 13:1707-1721. [PMID: 29599615 PMCID: PMC5866725 DOI: 10.2147/ijn.s154605] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction poly(l-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic–organic composite has a great application prospect in bone tissue engineering. Many inorganic–organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose The purpose of this study was to promote the bone repair. Materials and methods Surgical operation of rabbits was carried out in this study. Results The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.
Collapse
Affiliation(s)
- Min Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Kun Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Department of Science and Technology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Weixiao Yan
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Li Xue
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Yi Jin
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Haiyun Ma
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Jinchao Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
10
|
Lee S, Cho HY, Bui HTT, Kang D. The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. BMC Cell Biol 2014; 15:42. [PMID: 25420887 PMCID: PMC4258059 DOI: 10.1186/s12860-014-0042-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential to differentiate into specialized cell lineages such as osteoblasts and adipocytes in vitro. There exists a reciprocal relationship between osteogenic and adipogenic differentiation of MSCs that an osteogenic phenotype occurs at the expense of an adipogenic phenotype and vice versa, which in turn influence one another's phenotype through negative feedback loops. Thus, it is important to understand what signaling molecules modulate the lineage commitment of MSCs. Protein kinase C (PKC) plays a central role in cellular signal transduction for mediating diverse biological functions, and dysregulation of PKC activity is involved in various metabolic diseases including cancer, diabetes, and heart disease. Although the role of individual PKC isoforms has been investigated in various fields, the potential role of PKC in bone metabolism is not completely understood. In this study, we investigated the potential role of PKCδ in osteogenic lineage commitment of human bone marrow-derived mesenchymal stem cells (hBMSCs). RESULTS We observed that expression and phosphorylation of PKCδ were increased during osteogenic differentiation of hBMSCs. Pharmacological inhibition and genetic ablation of PKCδ in hBMSCs resulted in a significant attenuation of osteogenic differentiation as evidenced by reduced ALP activity and ECM mineralization, as well as down-regulation of the expression of osteoblast-specific genes. These effects were also accompanied by induction of adipogenic differentiation and up-regulation of the expression of adipocyte-specific genes involved in lipid synthesis in osteogenic induction of hBMSCs. Additionally, the activation of AMPK, which is a key cellular energy sensor, induced osteogenesis of hBMSCs. However, the inhibition of AMPK activity by compound C did not affect the activation of PKCδ at all, indicating that there is no direct correlation between AMPK and PKCδ in osteogenesis of hBMSCs. CONCLUSIONS These results suggest that PKCδ is a critical regulator for the balance between osteogenesis and adipogenesis of hBMSCs and thus has a potential novel therapeutic target for the treatment of metabolic bone diseases.
Collapse
|
11
|
Song JK, Lee CH, Hwang SM, Joo BS, Lee SY, Jung JS. Effect of phorbol 12-myristate 13-acetate on the differentiation of adipose-derived stromal cells from different subcutaneous adipose tissue depots. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:289-96. [PMID: 25177160 PMCID: PMC4146630 DOI: 10.4196/kjpp.2014.18.4.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/29/2022]
Abstract
Human adipose-tissue-derived stromal cells (hADSCs) are abundant in adipose tissue and can differentiate into multi-lineage cell types, including adipocytes, osteoblasts, and chondrocytes. In order to define the optimal harvest site of adipose tissue harvest site, we solated hADSCs from different subcutaneous sites (upper abdomen, lower abdomen, and thigh) and compared their proliferation and potential to differentiate into adipocytes and osteoblasts. In addition, this study examined the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, on proliferation and differentiation of hADSCs to adipocytes or osteoblasts. hADSCs isolated from different subcutaneous depots have a similar growth rate. Fluorescence-activated cell sorting (FACS) analysis showed that the expression levels of CD73 and CD90 were similar between hADSCs from abdomen and thigh regions. However, the expression of CD105 was lower in hADSCs from the thigh than in those from the abdomen. Although the adipogenic differentiation potential of hADSCs from both tissue regions was similar, the osteogenic differentiation potential of hADSCs from the thigh was greater than that of hADSCs from the abdomen. Phorbol 12-myristate 13-acetate (PMA) treatment increased osteogenic differentiation and suppressed adipogenic differentiation of all hADSCs without affecting their growth rate and the treatment of Go6983, a general inhibitor of protein kinase C (PKC) blocked the PMA effect. These findings indicate that the thigh region might be a suitable source of hADSCs for bone regeneration and that the PKC signaling pathway may be involved in the adipogenic and osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Jennifer K Song
- Aesthetic, Plastic, & Reconstructive Surgery Center, Good Moonhwa Hospital, Busan 614-847, Korea
| | - Chang Hoon Lee
- S&M Research Institute, Good Moonhwa Hospital, Busan 614-847, Korea
| | - So-Min Hwang
- Aesthetic, Plastic, & Reconstructive Surgery Center, Good Moonhwa Hospital, Busan 614-847, Korea
| | - Bo Sun Joo
- Center for Reproductive Medicine, Good Moonhwa Hospital, Busan 614-847, Korea
| | - Sun Young Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-790, Korea
| | - Jin Sup Jung
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-790, Korea
| |
Collapse
|
12
|
Zhu F, Sweetwyne MT, Hankenson KD. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells 2014; 31:1181-92. [PMID: 23404789 DOI: 10.1002/stem.1353] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/29/2012] [Indexed: 12/22/2022]
Abstract
JAG1, the gene for the Jagged-1 ligand (Jag1) in the Notch signaling pathway, is variably mutated in Alagille Syndrome (ALGS). ALGS patients have skeletal defects, and additionally JAG1 has been shown to be associated with low bone mass through genome-wide association studies. Plating human osteoblast precursors (human mesenchymal stem cells-hMSCs) on Jag1 is sufficient to induce osteoblast differentiation; however, exposure of mouse MSC (mMSC) to Jag1 actually inhibits osteoblastogenesis. Overexpression of the notch-2 intracellular domain (NICD2) is sufficient to mimic the effect of Jag1 on hMSC osteoblastogenesis, while blocking Notch signaling with a γ-secretase inhibitor or with dominant-negative mastermind inhibits Jag1-induced hMSC osteoblastogenesis. In pursuit of interacting signaling pathways, we discovered that treatment with a protein kinase C δ (PKCδ) inhibitor abrogates Jag1-induced hMSC osteoblastogenesis. Jag1 results in rapid PKCδ nuclear translocation and kinase activation. Furthermore, Jag1 stimulates the physical interaction of PKCδ with NICD. Collectively, these results suggest that Jag1 induces hMSC osteoblast differentiation through canonical Notch signaling and requires concomitant PKCδ signaling. This research also demonstrates potential deficiencies in using mouse models to study ALGS bone abnormalities.
Collapse
Affiliation(s)
- Fengchang Zhu
- Department of Clinical Studies-New Bolton Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
13
|
Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cell Signal 2014; 26:979-1000. [PMID: 24440668 DOI: 10.1016/j.cellsig.2014.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
Abstract
During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Ali Mobasheri
- D-BOARD European Consortium for Biomarker Discovery, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Medicine, Faculty of Medicine and Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Hua WK, Shiau YH, Lee OK, Lin WJ. Elevation of protein kinase Cα stimulates osteogenic differentiation of mesenchymal stem cells through the TAT-mediated protein transduction system. Biochem Cell Biol 2013; 91:443-8. [PMID: 24219286 DOI: 10.1139/bcb-2013-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate toward various lineages, including the osteogenic lineage, and thus hold great potential for clinic purposes. By using pharmacological inhibitors, protein kinase C (PKC) signaling has been shown to either negatively or positively regulate differentiation of bone, however, due to the low transfection efficiency in MSCs, the role of individual PKC isoforms is still not fully understood. In this study, we established a TAT peptide-mediated transduction system that efficiently delivered PKCα proteins into MSCs in a non-invasive fashion. The increased PKCα protein levels significantly promoted osteogenic differentiation in the murine mesenchymal C3H10T1/2 cells and in primary MSCs from both human and mouse, as demonstrated by the enhanced activity of the osteoblast marker, alkaline phosphatase, and the enhanced expression of the key transcription factor runx2. Mineralization is an important functional indication for bone differentiation. Our results further showed that PKCα promoted expression of the important osteocalcin gene and the accumulation of calcium minerals. Taken together, this study provides direct evidence showing that PKCα positively regulates osteogenic differentiation and demonstrates that the TAT peptide-mediated method enables functional study of specific PKC isoforms in MSCs without using viral infection. This may promote the application of PKCs in therapeutic treatment.
Collapse
Affiliation(s)
- Wei-Kai Hua
- a Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan
| | | | | | | |
Collapse
|
15
|
Reduced PKC α Activity Induces Senescent Phenotype in Erythrocytes. Anemia 2012; 2012:168050. [PMID: 22988493 PMCID: PMC3439938 DOI: 10.1155/2012/168050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/26/2012] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanism mediating expression of senescent cell antigen-aggregated or cleaved band 3 and externalized phosphatidylserine (PS) on the surface of aged erythrocytes and their premature expression in certain anemias is not completely elucidated. The erythrocytes with these surface modifications undergo macrophage-mediated phagocytosis. In this study, the role of protein kinase C (PKC) isoforms in the expression of these surface modifications was investigated. Inhibition of PKC α by 30 μM rottlerin (R30) and 2.3 nM Gö 6976 caused expression of both the senescent cell marker-externalized PS measured by FACS analysis and aggregated band 3 detected by western blotting. In contrast to this observation, but in keeping with literature, PKC activation by phorbol-12-myristate-13-acetate (PMA) also led to the expression of senescence markers. We explain this antithesis by demonstrating that PMA-treated cells show reduction in the activity of PKC α, thereby simulating inhibition. The reduction in PKC α activity may be attributed to the known downregulation of PMA-activated PKC α, caused by its membrane translocation and proteolysis. We demonstrate membrane translocation of PKC α in PMA-treated cells to substantiate this inference. Thus loss of PKC α activity either by inhibition or downregulation can cause surface modifications which can trigger erythrophagocytosis.
Collapse
|
16
|
Adwan TS, Ohm AM, Jones DNM, Humphries MJ, Reyland ME. Regulated binding of importin-α to protein kinase Cδ in response to apoptotic signals facilitates nuclear import. J Biol Chem 2011; 286:35716-35724. [PMID: 21865164 DOI: 10.1074/jbc.m111.255950] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PKCδ translocates into the nucleus in response to apoptotic agents and functions as a potent cell death signal. Cytoplasmic retention of PKCδ and its transport into the nucleus are essential for cell homeostasis, but how these processes are regulated is poorly understood. We show that PKCδ resides in the cytoplasm in a conformation that precludes binding of importin-α. A structural model of PKCδ in the inactive state suggests that the nuclear localization sequence (NLS) is prevented from binding to importin-α through intramolecular contacts between the C2 and catalytic domains. We have previously shown that PKCδ is phosphorylated on specific tyrosine residues in response to apoptotic agents. Here, we show that phosphorylation of PKCδ at Tyr-64 and Tyr-155 results in a conformational change that allows exposure of the NLS and binding of importin-α. In addition, Hsp90 binds to PKCδ with similar kinetics as importin-α and is required for the interaction of importin-α with the NLS. Finally, we elucidate a role for a conserved PPxxP motif, which overlaps the NLS, in nuclear exclusion of PKCδ. Mutagenesis of the conserved prolines to alanines enhanced importin-α binding to PKCδ and induced its nuclear import in resting cells. Thus, the PPxxP motif is important for maintaining a conformation that facilitates cytosplasmic retention of PKCδ. Taken together, this study establishes a novel mechanism that retains PKCδ in the cytoplasm of resting cells and regulates its nuclear import in response to apoptotic stimuli.
Collapse
Affiliation(s)
- Tariq S Adwan
- Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Angela M Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Michael J Humphries
- Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mary E Reyland
- Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045; Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|