1
|
Passos J, Lopes LB, Panitch A. Collagen-Binding Nanoparticles for Paclitaxel Encapsulation and Breast Cancer Treatment. ACS Biomater Sci Eng 2023; 9:6805-6820. [PMID: 37982792 PMCID: PMC10716849 DOI: 10.1021/acsbiomaterials.3c01332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
In this study, we developed a novel hybrid collagen-binding nanocarrier for potential intraductal administration and local breast cancer treatment. The particles were formed by the encapsulation of nanostructured lipid carriers (NLCs) containing the cytotoxic drug paclitaxel within a shell of poly(N-isopropylacrylamide) (pNIPAM), and were functionalized with SILY, a peptide that binds to collagen type I (which is overexpressed in the mammary tumor microenvironment) to improve local retention and selectivity. The encapsulation of the NLCs in the pNIPAM shell increased nanoparticle size by approximately 140 nm, and after purification, a homogeneous system of hybrid nanoparticles (∼96%) was obtained. The nanoparticles exhibited high loading efficiency (<76%) and were capable of prolonging paclitaxel release for up to 120 h. SILY-modified nanoparticles showed the ability to bind to collagen-coated surfaces and naturally elaborated collagen. Hybrid nanoparticles presented cytotoxicity up to 3.7-fold higher than pNIPAM-only nanoparticles on mammary tumor cells cultured in monolayers. In spheroids, the increase in cytotoxicity was up to 1.8-fold. Compared to lipid nanoparticles, the hybrid nanoparticle modified with SILY increased the viability of nontumor breast cells by up to 1.59-fold in a coculture model, suggesting the effectiveness and safety of the system.
Collapse
Affiliation(s)
- Julia
Sapienza Passos
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Luciana B. Lopes
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Alyssa Panitch
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Jia S, Wang J, Wang X, Liu X, Li S, Li Y, Li J, Wang J, Man S, Guo Z, Sun Y, Jia Z, Wang L, Li X. Genetically encoded in situ gelation redox-responsive collagen-like protein hydrogel for accelerating diabetic wound healing. Biomater Sci 2023; 11:7748-7758. [PMID: 37753880 DOI: 10.1039/d3bm01010d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Genetically encoded collagen-like protein-based hydrogels have demonstrated remarkable efficacy in promoting the healing process in diabetic patients. However, the current methods for preparing these hydrogels pose significant challenges due to harsh reaction conditions and the reliance on chemical crosslinkers. In this study, we present a genetically encoded approach that allows for the creation of protein hydrogels without the need for chemical additives. Our design involves the genetic encoding of paired-cysteine residues at the C- and N-terminals of a meticulously engineered collagen-like recombination protein. The protein-based hydrogel undergoes a gel-sol transition in response to redox stimulation, achieving a gel-sol transition. We provide evidence that the co-incubation of the protein hydrogel with 3T3 cells not only enhances cell viability but also promotes cell migration. Moreover, the application of the protein hydrogel significantly accelerates the healing of diabetic wounds by upregulating the expression of collagen-1α (COL-1α) and Cytokeratin 14 (CK-14), while simultaneously reducing oxidant stress in the wound microenvironment. Our study highlights a straightforward strategy for the preparation of redox-responsive protein hydrogels, removing the need for additional chemical agents. Importantly, our findings underscore the potential of this hydrogel system for effectively treating diabetic wounds, offering a promising avenue for future therapeutic applications.
Collapse
Affiliation(s)
- Shuang Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xiaojie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xing Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia people's Hospital, 20 Zhaowuda Road, Hohhot, 010021, Inner Mongolia, China
| | - Yimiao Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jiaqi Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jieqi Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shad Man
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhao Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Yinan Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Liyao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
- Institutes of Biomedical Sciences, Inner Mongolia University, Inner Mongolia University, Hohhot, 010020, PR China
| |
Collapse
|
3
|
Liu Y, Wu W, Feng S, Chen Y, Wu X, Zhang Q, Wu S. Dynamic response of the cell traction force to osmotic shock. MICROSYSTEMS & NANOENGINEERING 2023; 9:131. [PMID: 37854722 PMCID: PMC10579240 DOI: 10.1038/s41378-023-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.
Collapse
Affiliation(s)
- Yongman Liu
- School of Biomedical Engineering, Anhui Medical University, 230032 Hefei, China
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shuo Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Xiaoping Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
4
|
Lee S, Choi G, Yang YJ, Joo KI, Cha HJ. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Carbohydr Polym 2023; 313:120895. [PMID: 37182936 DOI: 10.1016/j.carbpol.2023.120895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kye Il Joo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
5
|
Abreu CM, Lago MEL, Pires J, Reis RL, da Silva LP, Marques AP. Gellan gum-based hydrogels support the recreation of the dermal papilla microenvironment. BIOMATERIALS ADVANCES 2023; 150:213437. [PMID: 37116455 DOI: 10.1016/j.bioadv.2023.213437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The dermal papilla (DP), a specialized compartment within the hair follicle, regulates hair growth. However, human DP cells rapidly lose their inductivity in 2D-culture given the loss of positional and microenvironmental cues. Spheroids have been capable of recreating the 3D intercellular organization of DP cells, however, DP cell-matrix interactions are poorly represented. Considering the specific nature of the DP's extracellular matrix (ECM), we functionalized gellan gum (GG) with collagen IV-(HepIII) or fibronectin-(cRGDfC) derived peptide sequences to generate a 3D environment in which the phenotype and physiological functions of DP cells are restored. We further tuned the stiffness of the microenvironments by varying GG amount. Biomimetic peptides in stiffer hydrogels promoted the adhesion of DP cells, while each peptide and amount of polymer independently influenced the type and quantity of ECM proteins deposited. Furthermore, although peptides did not seem to have an influence, stiffer hydrogels improved the inductive capacity of DP cells after short term culture. Interestingly, independently of the peptide, these hydrogels supported the recapitulation of basic hair morphogenesis-like events when incorporated in an organotypic human skin in vitro model. Our work demonstrates that tailored GG hydrogels support the generation of a microenvironment in which both cell-ECM and cell-cell interactions positively influence DP cells towards the creation of an artificial DP.
Collapse
Affiliation(s)
- Carla M Abreu
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E L Lago
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pires
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2023; 45:15-29. [PMID: 35659923 PMCID: PMC10006530 DOI: 10.1016/j.jare.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are the most promising stem cells for the treatment of multiple inflammatory and immune diseases due to their easy acquisition and potent immuno-regulatory capacities. These immune functions mainly depend on the MSC secretion of soluble factors. Recent studies have shown that the metabolism of MSCs plays critical roles in immunomodulation, which not only provides energy and building blocks for macromolecule synthesis but is also involved in the signaling pathway regulation. AIM OF REVIEW A thorough understanding of metabolic regulation in MSC immunomodulatory properties can provide new sights to the enhancement of MSC-based therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC immune regulation can be affected by cellular metabolism (glucose, adenosine triphosphate, lipid and amino acid metabolism), which further mediates MSC therapy efficiency in inflammatory and immune diseases. The enhancement of glycolysis of MSCs, such as signaling molecule activation, inflammatory cytokines priming, or environmental control can promote MSC immune functions and therapeutic potential. Besides glucose metabolism, inflammatory stimuli also alter the lipid molecular profile of MSCs, but the direct link with immunomodulatory properties remains to be further explored. Arginine metabolism, glutamine-glutamate metabolism and tryptophan-kynurenine via indoleamine 2,3-dioxygenase (IDO) metabolism all contribute to the immune regulation of MSCs. In addition to the metabolism dictating the MSC immune functions, MSCs also influence the metabolism of immune cells and thus determine their behaviors. However, more direct evidence of the metabolism in MSC immune abilities as well as the underlying mechanism requires to be uncovered.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
7
|
Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release 2023; 353:147-165. [PMID: 36423869 DOI: 10.1016/j.jconrel.2022.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Homeostasis is the most fundamental mechanism of physiological processes, occurring simultaneously as the production and outcomes of pathological procedures. Accompanied by manufacture and maturation of intricate and highly hierarchical architecture obtained from 3D bioprinting (three-dimension bioprinting), homeostasis has substantially determined the quality of printed tissues and organs. Instead of only shape imitation that has been the remarkable advances, fabrication for functionality to make artificial tissues and organs that act as real ones in vivo has been accepted as the optimized strategy in 3D bioprinting for the next several years. Herein, this review aims to provide not only an overview of 3D bioprinting, but also the main strategies used for homeostasis bioprinting. This paper briefly introduces the principles of 3D bioprinting system applied in homeostasis regulations firstly, and then summarizes the specific strategies and potential trend of homeostasis regulations using multiple types of stimuli-response biomaterials to maintain auto regulation, specifically displaying a brilliant prospect in hormone regulation of homeostasis with the most recently outbreak of vasculature fabrication. Finally, we discuss challenges and future prospects of homeostasis fabrication based on 3D bioprinting in regenerative medicine, hoping to further inspire the development of functional fabrication in 3D bioprinting.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
8
|
Mair V, Paulus I, Groll J, Ryma M. Freeform printing of thermoresponsive poly(2-cyclopropyl-oxazoline) as cytocompatible and on-demand dissolving template of hollow channel networks in cell-laden hydrogels. Biofabrication 2022; 14. [PMID: 35193128 DOI: 10.1088/1758-5090/ac57a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Conventional additive-manufacturing technologies rely on the vertical stacking of layers, whereas each layer provides the structural integrity for the upcoming one. This inherently gives rise to limitations in freedom of design especially when structures containing large voids or truly 3D pathways for printed filaments are aspired. An especially interesting technique, which overcomes these layer limitations, is freeform printing, where thermoplastic materials are printed in 3D through controlling the temperature profile such that the polymer melt solidifies right when it exits the nozzle. In this study, we introduce freeform printing for thermoresponsive polymers at the example of poly(2-cyclopropyl-oxazoline) (PcycloPrOx). This material is especially interesting for biofabrication, as poly(oxazoline)s are known to provide excellent cytocompatibility. Furthermore, (PcycloPrOx) scaffolds provide adequate stability, so that the printed structures can be embedded in cell-laden hydrogels and sufficient time remains for the gel to form around the scaffold before dissolution via temperature reduction. This ensures accuracy and prevents channel collapse for the creation of cell-laden hydrogels with an embedded three-dimensionally interconnected channel network without the need of any additional processing step such as coating.
Collapse
Affiliation(s)
- Vincent Mair
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg, 97070, GERMANY
| | - Ilona Paulus
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg, 97070, GERMANY
| | - Juergen Groll
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg, 97070, GERMANY
| | - Matthias Ryma
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg, 97070, GERMANY
| |
Collapse
|
9
|
Fan YL, Zhao HC, Feng XQ. Hypertonic pressure affects the pluripotency and self-renewal of mouse embryonic stem cells. Stem Cell Res 2021; 56:102537. [PMID: 34562798 DOI: 10.1016/j.scr.2021.102537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
As an important mechanical cue in the extracellular microenvironment, osmotic stress directly affects the proliferation, migration, and differentiation of cells. In this paper, we focused on the influence of hypertonic pressure on the colony morphology, stemness, and self-renew of mouse embryonic stem cells (mESCs). Our results showed that culture media with hypertonic pressure are more conducive to the maintenance of 3D colony morphology and pluripotency of mESCs after withdrawing the glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021 and the mitogen-activated protein kinase (MEK) inhibitor PD0325901 (hereinafter referred to as 2i) for 48 h. Furthermore, we revealed the microscopic mechanisms of the this finding: hypertonic pressure resulted in the depolymerization of F-actin cytoskeleton and limits Yes-associated protein (hereinafter referred to as YAP) transmission into the nucleus which play a vital role in the regulation of cell proliferation, and resulting in cell-cycle arrest at last.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Zhao F, Cheng J, Zhang J, Yu H, Dai W, Yan W, Sun M, Ding G, Li Q, Meng Q, Liu Q, Duan X, Hu X, Ao Y. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Acta Biomater 2021; 131:262-275. [PMID: 34157451 DOI: 10.1016/j.actbio.2021.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Decellularized extracellular matrix (dECM) hydrogels are being increasingly investigated for use in bio-inks for three-dimensional cell printing given their good cytocompatibility and biomimetic properties. The osmotic pressure and stiffness of bio-ink are important factors affecting the biological functions of printed cells. However, little attention has been given to the osmotic pressure and stiffness of the dECM bio-inks. Here, we compared three types of commonly used acidic solutions in the bio-fabrication of a tendon derived dECM bio-ink for 3D cell printing (0.5 M acetic acid, 0.1 M hydrochloric acid and 0.02 M hydrochloric acid). We found that low pH value of 0.1 M hydrochloric acid could accelerate the digestion process for dECM powders. This could lead to a much softer dECM hydrogel with storage modulus less than 100 Pa. This soft dECM hydrogel facilitated the spreading and proliferation of stem cells encapsulated within it. It also showed better tendon-inducing ability compared with two others much stiffer dECM hydrogels. However, this over-digested dECM hydrogel was more unstable as it could shrink with the culture time going on. For 0.5 M acetic acid made dECM bio-ink, the hyperosmotic state of the bio-ink led to much lower cellular viability rates. Postprocess (Dilution or dialysis) to tailor the osmotic pressure of hydrogels could be a necessary step before mixed with cells. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation. And a balance should be made between the digestion period, strength of acidic solution, as well as the size and concentration of the dECM powders. STATEMENT OF SIGNIFICANCE: The dECM bio-ink has been widely used in 3D cell printing for tissue engineering and organ modelling. In this study, we found that different types of acid have different digestion and dissolution status for the dECM materials. A much softer tendon derived dECM hydrogel with lower stiffness could facilitate the cellular spreading, proliferation and tendon differentiation. We also demonstrated that the osmotic pressure should be taken care of in the preparation of dECM bio-ink with 0.5 M acetic acid. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation.
Collapse
|
11
|
Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. WATER RESEARCH 2021; 188:116513. [PMID: 33091801 DOI: 10.1016/j.watres.2020.116513] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Although the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and H2O2, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H+ and K+) and energy metabolism (mitochondrial membrane potential, intracellular Ca2+ and ATP level). The ROS analysis show that ·OH, 1O2, ·O2-and H2O2 were generated in this plasma-liquid interaction system and ·O2-served as the precursor of 1O2. Additionally, the solution pH was reduced. Plasma can effectively inactivate yeast cells mainly via apoptosis by damaging cell membrane, intracellular redox and ion homeostasis and energy metabolism as well as causing DNA fragmentation. ROS scavengers (l-His, d-Man and SOD) and pH buffer (phosphate buffer solution, PBS) were employed to investigate the role of five antimicrobial factors (·OH, 1O2, ·O2-, H2O2 and low pH) in plasma sterilization. Results show that they have different influences on the aforementioned cell physiological activities. The ·OH and 1O2 contributed most to the yeast inactivation. The ·OH mainly attacked cell membrane and increased cell membrane permeability. The disturb of cell energy metabolism was mainly attributed to 1O2. The damage of cell membrane as well as extracellular low pH could break the intracellular ionic equilibrium and further reduce cell membrane potential. The remarkable increase of intracellular H2O2 was mainly due to the influx of extracellular H2O2 via destroyed cell membrane, which played a little role in yeast inactivation during 10-min plasma treatment. These findings provide comprehensive insights into the antimicrobial mechanism of plasma, which can promote the development of plasma as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yuqi Wang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Siyao Ju
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V. Biomechanical factors in three-dimensional tissue bioprinting. APPLIED PHYSICS REVIEWS 2020; 7:041319. [PMID: 33425087 PMCID: PMC7780402 DOI: 10.1063/5.0023206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs. This review provides a comprehensive and detailed overview on various biomechanical factors involved in tissue bioprinting, including those involved in pre, during, and post printing procedures. In preprinting processes, factors including viscosity, osmotic pressure, and injectability are reviewed and their influence on cell behavior during the bioink preparation is discussed, providing a basic guidance for the selection and optimization of bioinks. In during bioprinting processes, we review the key characteristics that determine the success of tissue manufacturing, including the rheological properties and surface tension of the bioink, printing flow rate control, process-induced mechanical forces, and the in situ cross-linking mechanisms. Advanced bioprinting techniques, including embedded and multi-material printing, are explored. For post printing steps, general techniques and equipment that are used for characterizing the biomechanical properties of printed tissue constructs are reviewed. Furthermore, the biomechanical interactions between printed constructs and various tissue/cell types are elaborated for both in vitro and in vivo applications. The review is concluded with an outlook regarding the significance of biomechanical processes in tissue bioprinting, presenting future directions to address some of the key challenges faced by the bioprinting community.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Holly Bauser-Heaton
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| | - Vahid Serpooshan
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
13
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth KS. Relaxation of Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal Organoids. Adv Healthc Mater 2020; 9:e1901214. [PMID: 31957249 PMCID: PMC7274865 DOI: 10.1002/adhm.201901214] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Intestinal organoid protocols rely on the use of extracellular scaffolds, typically Matrigel, and upon switching from growth to differentiation promoting media, a symmetry breaking event takes place. During this stage, the first bud like structures analogous to crypts protrude from the central body and differentiation ensues. While organoids provide unparalleled architectural and functional complexity, this sophistication is also responsible for the high variability and lack of reproducibility of uniform crypt-villus structures. If function follows form in organoids, such structural variability carries potential limitations for translational applications (e.g., drug screening). Consequently, there is interest in developing synthetic biomaterials to direct organoid growth and differentiation. It has been hypothesized that synthetic scaffold softening is necessary for crypt development, and these mechanical requirements raise the question, what compressive forces and subsequent relaxation are necessary for organoid maturation? To that end, allyl sulfide hydrogels are employed as a synthetic extracellular matrix mimic, but with photocleavable bonds that temporally regulate the material's bulk modulus. By varying the extent of matrix softening, it is demonstrated that crypt formation, size, and number per colony are functions of matrix softening. An understanding of the mechanical dependence of crypt architecture is necessary to instruct homogenous, reproducible organoids for clinical applications.
Collapse
Affiliation(s)
- Ella A Hushka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - F Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tobin E Brown
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado, Denver, CO, 80204, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Gasperini L, Marques AP, Reis RL. Microfluidics for Processing of Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:15-25. [PMID: 32285362 DOI: 10.1007/978-3-030-36588-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidics techniques can be used to process a wide range of biomaterials, from synthetic to natural origin ones. This chapter describes microfluidic processing of biomaterials, mainly polymeric materials of natural origin, focusing on water-soluble polymers that form non-flowing phases after crosslinking. Some polysaccharides and proteins, including agarose, alginate, chitosan, gellan gum, hyaluronic acid, collagen, gelatin, and silk fibroin are emphasized deu to their relevance in the field. The critical characteristics of these materials are discussed, giving particular consideration to those that directly impact its processability using microfluidics. Furthermore, some microfluidic-based processing techniques are presented, describing their suitability to process materials with different sol-gel transition mechanisms.
Collapse
Affiliation(s)
- Luca Gasperini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
16
|
Laomeephol C, Guedes M, Ferreira H, Reis RL, Kanokpanont S, Damrongsakkul S, Neves NM. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. J Tissue Eng Regen Med 2019; 14:160-172. [PMID: 31671250 DOI: 10.1002/term.2982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Silk fibroin (SF) hydrogels can be obtained via self-assembly, but this process takes several days or weeks, being unfeasible to produce cell carrier hydrogels. In this work, a phospholipid, namely, 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DMPG), was used to induce and accelerate the gelation process of SF solutions. Due to the amphipathic nature and negative charge of DMPG, electrostatic and hydrophobic interactions between the phospholipids and SF chains will occur, inducing the structural transition of SF chains to the beta sheet and consequently a rapid gel formation is observed (less than 50 min). Moreover, the gelation time can be controlled by varying the lipid concentration. To assess the potential of the hydrogels as cell carriers, several mammalian cell lines, including L929, NIH/3T3, SaOS-2, and CaSki, were encapsulated into the hydrogel. The silk-based hydrogels supported the normal growth of fibroblasts, corroborating their cytocompatibility. Interestingly, an inhibition in the growth of cancer-derived cell lines was observed. Therefore, DMPG-induced SF hydrogels can be successfully used as a 3D platform for in situ cell encapsulation, opening promising opportunities in biomedical applications, such as in cell therapies and tissue regeneration.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.,Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Marta Guedes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Sorada Kanokpanont
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.,Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Damrongsakkul
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.,Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
17
|
Bioink formulations to ameliorate bioprinting-induced loss of cellular viability. Biointerphases 2019; 14:051006. [DOI: 10.1116/1.5111392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Araújo-Custódio S, Gomez-Florit M, Tomás AR, Mendes BB, Babo PS, Mithieux SM, Weiss A, Domingues RMA, Reis RL, Gomes ME. Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomater Sci Eng 2019; 5:1392-1404. [PMID: 33405615 DOI: 10.1021/acsbiomaterials.8b01179] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels are particularly interesting for applications in minimally invasive tissue engineering and regenerative medicine strategies. However, the typical isotropic microstructure of these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable nanoparticles. Then, these nanoparticles (0.1-0.5 wt %) were incorporated within gelatin hydrogels, creating injectable and magnetically responsive materials with potential for various biomedical applications. Nanoparticle alignment within the hydrogel matrix was achieved under exposure to uniform low magnetic fields (108 mT), resulting in biomaterials with directional microstructure and anisotropic mechanical properties. The biological performance of these nanocomposite hydrogels was studied using adipose tissue derived human stem cells. Cells encapsulated in the nanocomposite hydrogels showed high rates of viability demonstrating that the nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns stemming from nanoparticle alignment induced the directional growth of seeded and, to a lower extent, encapsulated cells in the hydrogels, suggesting that this injectable system might find application in both cellular and acellular strategies targeting the regeneration of anisotropic tissues.
Collapse
Affiliation(s)
- Sandra Araújo-Custódio
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana R Tomás
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Suzanne M Mithieux
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony Weiss
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|