1
|
Fanizza F, Boeri L, Donnaloja F, Perottoni S, Forloni G, Giordano C, Albani D. Development of an Induced Pluripotent Stem Cell-Based Liver-on-a-Chip Assessed with an Alzheimer's Disease Drug. ACS Biomater Sci Eng 2023. [PMID: 37318190 DOI: 10.1021/acsbiomaterials.3c00346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liver-related drug metabolism is a key aspect of pharmacokinetics and possible toxicity. From this perspective, the availability of advanced in vitro models for drug testing is still an open need, also to the end of reducing the burden of in vivo experiments. In this scenario, organ-on-a-chip is gaining attention as it couples a state-of-the art in vitro approach to the recapitulation of key in vivo physiological features such as fluidodynamics and a tri-dimensional cytoarchitecture. We implemented a novel liver-on-a-chip (LoC) device based on an innovative dynamic device (MINERVA 2.0) where functional hepatocytes (iHep) have been encapsulated into a 3D hydrogel matrix interfaced through a porous membrane with endothelial cells (iEndo)]. Both lines were derived from human-induced pluripotent stem cells (iPSCs), and the LoC was functionally assessed with donepezil, a drug approved for Alzheimer's disease therapy. The presence of iEndo and a 3D microenvironment enhanced the expression of liver-specific physiologic functions as in iHep, after 7 day perfusion, we noticed an increase of albumin, urea production, and cytochrome CYP3A4 expression compared to the iHep static culture. In particular, for donepezil kinetics, a computational fluid dynamic study conducted to assess the amount of donepezil diffused into the LoC indicated that the molecule should be able to pass through the iEndo and reach the target iHep construct. Then, we performed experiments of donepezil kinetics that confirmed the numerical simulations. Overall, our iPSC-based LoC reproduced the in vivo physiological microenvironment of the liver and was suitable for potential hepatotoxic screening studies.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
2
|
Dufva M. A quantitative meta-analysis comparing cell models in perfused organ on a chip with static cell cultures. Sci Rep 2023; 13:8233. [PMID: 37217582 DOI: 10.1038/s41598-023-35043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
As many consider organ on a chip for better in vitro models, it is timely to extract quantitative data from the literature to compare responses of cells under flow in chips to corresponding static incubations. Of 2828 screened articles, 464 articles described flow for cell culture and 146 contained correct controls and quantified data. Analysis of 1718 ratios between biomarkers measured in cells under flow and static cultures showed that the in all cell types, many biomarkers were unregulated by flow and only some specific biomarkers responded strongly to flow. Biomarkers in cells from the blood vessels walls, the intestine, tumours, pancreatic island, and the liver reacted most strongly to flow. Only 26 biomarkers were analysed in at least two different articles for a given cell type. Of these, the CYP3A4 activity in CaCo2 cells and PXR mRNA levels in hepatocytes were induced more than two-fold by flow. Furthermore, the reproducibility between articles was low as 52 of 95 articles did not show the same response to flow for a given biomarker. Flow showed overall very little improvements in 2D cultures but a slight improvement in 3D cultures suggesting that high density cell culture may benefit from flow. In conclusion, the gains of perfusion are relatively modest, larger gains are linked to specific biomarkers in certain cell types.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Torizal FG, Utami T, Lau QY, Inamura K, Nishikawa M, Sakai Y. Dialysis based-culture medium conditioning improved the generation of human induced pluripotent stem cell derived-liver organoid in a high cell density. Sci Rep 2022; 12:20774. [PMID: 36456801 PMCID: PMC9715714 DOI: 10.1038/s41598-022-25325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Human pluripotent stem cell-derived liver organoids (HLOs) have recently become a promising alternative for liver regenerative therapy. To realize this application, a large amount of human-induced pluripotent stem cells (hiPSCs) derived-liver cells are required for partial liver replacement during transplantation. This method requires stepwise induction using costly growth factors to direct the hiPSCs into the hepatic lineage. Therefore, we developed a simple dialysis-based medium conditioning that fully utilized growth factors accumulation to improve hepatic differentiation of hiPSCs at a high cell density. The results demonstrated that the dialysis culture system could accumulate the four essential growth factors required in each differentiation stage: activin A, bone morphogenetic protein 4 (BMP4), hepatocyte growth factor (HGF), and oncostatin M (OSM). As a result, this low lactate culture environment allowed high-density bipotential hepatic differentiation of up to 4.5 × 107 cells/mL of human liver organoids (HLOs), consisting of hiPSC derived-hepatocyte like cells (HLCs) and cholangiocyte like-cells (CLCs). The differentiated HLOs presented a better or comparable hepatic marker and hepatobiliary physiology to the one that differentiated in suspension culture with routine daily medium replacement at a lower cell density. This simple miniaturized dialysis culture system demonstrated the feasibility of cost-effective high-density hepatic differentiation with minimum growth factor usage.
Collapse
Affiliation(s)
- Fuad Gandhi Torizal
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tia Utami
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Qiao You Lau
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kousuke Inamura
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Nishikawa
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Antarianto RD, Pragiwaksana A, Septiana WL, Mazfufah NF, Mahmood A. Hepatocyte Differentiation from iPSCs or MSCs in Decellularized Liver Scaffold: Cell–ECM Adhesion, Spatial Distribution, and Hepatocyte Maturation Profile. Organogenesis 2022; 18:2061263. [PMID: 35435152 PMCID: PMC9037523 DOI: 10.1080/15476278.2022.2061263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) and induced pluripotent stem cells (iPSC) have been reported to be able to differentiate to hepatocyte in vitro with varying degree of hepatocyte maturation. A simple method to decellularize liver scaffold has been established by the Department of Histology, Faculty of Medicine, Universitas Indonesia, in SCTE IMERI lab.15 This study aims to evaluate hepatocyte differentiation from iPSCs compared to MSCs derived in our decellularized liver scaffold. The research stages started with iPSC culture, decellularization, seeding cell culture into the scaffold, and differentiation into hepatocytes for 21 days. Hepatocyte differentiation from iPSCs and MSCs in the scaffolds was characterized using hematoxylin–eosin, Masson Trichrome, and immunohistochemistry staining to determine the fraction of the differentiation area. RNA samples were isolated on days 7 and 21. Expression of albumin, CYP450, and CK-19 genes were analyzed using the qRT-PCR method. Electron microscopy images were obtained by SEM. Immunofluorescence examination was done using HNF4-α and CEBPA markers. The results of this study in hepatocyte-differentiated iPSCs compared with hepatocyte-differentiated MSCs in decellularized liver scaffold showed lower adhesion capacity, single-cell-formation and adhered less abundant, decreased trends of albumin, and lower CYP450 expression. Several factors contribute to this result: lower initial seeding number, which causes only a few iPSCs to attach to certain parts of decellularized liver scaffold, and manual syringe injection for recellularization, which abruptly and unevenly creates pattern of single-cell-formation by hepatocyte-differentiated iPSC in the scaffold. Hepatocyte-differentiated MSCs have the advantage of higher adhesion capacity to collagen fiber decellularized liver scaffold. This leads to positive result: increase trends of albumin and higher CYP450 expression. Hepatocyte maturation is shown by diminishing CK-19, which is more prominent in hepatocyte-differentiated iPSCs in decellularized liver scaffold. Confirmation of mature hepatocyte-differentiated iPSCs in decellularized liver scaffold maturation is positive for HNF4-a and CEBPA. The conclusion of this study is hepatocyte-differentiated iPSCs in decellularized liver scaffold is mature with lower cell–ECM adhesion, spatial cell distribution, albumin, and CYP450 expression than hepatocyte-differentiated MSCs in decellularized liver scaffold.
Collapse
Affiliation(s)
- Radiana Dhewayani Antarianto
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem cell and tissue engineering research cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta Indonesia
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Adrian Pragiwaksana
- Program Master Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wahyunia Likhayati Septiana
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Gunadarma, Depok, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem cell and tissue engineering research cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta Indonesia
| | - Ameer Mahmood
- Stem cell unit Department of Anatomy, King Saud University, Riyadh, Kingdom Saudi Arabia
| |
Collapse
|
5
|
Bernal PN, Bouwmeester M, Madrid-Wolff J, Falandt M, Florczak S, Rodriguez NG, Li Y, Größbacher G, Samsom RA, van Wolferen M, van der Laan LJW, Delrot P, Loterie D, Malda J, Moser C, Spee B, Levato R. Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110054. [PMID: 35166410 DOI: 10.1002/adma.202110054] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Together, biofabrication and organoid technologies offer the unique potential to engineer multi-scale living constructs, with cellular microenvironments formed by stem cell self-assembled structures embedded in customizable bioprinted geometries. This study introduces the volumetric bioprinting of complex organoid-laden constructs, which capture key functions of the human liver. Volumetric bioprinting via optical tomography shapes organoid-laden gelatin hydrogels into complex centimeter-scale 3D structures in under 20 s. Optically tuned bioresins enable refractive index matching of specific intracellular structures, countering the disruptive impact of cell-mediated light scattering on printing resolution. This layerless, nozzle-free technique poses no harmful mechanical stresses on organoids, resulting in superior viability and morphology preservation post-printing. Bioprinted organoids undergo hepatocytic differentiation showing albumin synthesis, liver-specific enzyme activity, and remarkably acquired native-like polarization. Organoids embedded within low stiffness gelatins (<2 kPa) are bioprinted into mathematically defined lattices with varying degrees of pore network tortuosity, and cultured under perfusion. These structures act as metabolic biofactories in which liver-specific ammonia detoxification can be enhanced by the architectural profile of the constructs. This technology opens up new possibilities for regenerative medicine and personalized drug testing.
Collapse
Affiliation(s)
- Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Manon Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, École Polytechnique Fédéral Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Marc Falandt
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Nuria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Monique van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Paul Delrot
- Readily3D SA, EPFL Innovation Park, Building A, Lausanne, CH-1015, Switzerland
| | - Damien Loterie
- Readily3D SA, EPFL Innovation Park, Building A, Lausanne, CH-1015, Switzerland
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, École Polytechnique Fédéral Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CT, The Netherlands
| |
Collapse
|
6
|
Pazdzior R, Kubicek S. PlateFlo - A software-controllable plate-scale perfusion system for culture of adherent cells. HARDWAREX 2021; 10:e00222. [PMID: 35607664 PMCID: PMC9123465 DOI: 10.1016/j.ohx.2021.e00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 06/15/2023]
Abstract
Here we present a versatile system for milliliter-scale perfusion culture of adherent cells that can be built using basic tools, based on a readily available one-well culture plate (84 cm2 culture area). Media composition and flow paths can be programmatically controlled via USB serial interface using the FETbox hardware controller and associated PlateFlo Python package. The FETbox can control up to five high current 12 V devices such as common pinch valves, solenoids, and DC motor peristaltic pumps. It was designed to be easily customized with built-in accommodation for additional electronic components (e.g. analog sensors and input), use of the ubiquitous Arduino Nano platform, and easily expanded serial communication protocol. Multiple FETboxes can be used in parallel for additional devices. Applications of the PlateFlo system include perfusion culture of laboratory experiments requiring large cell numbers including genome-scale genetic screens and proteomics, as well as novel perfusion schemes including dynamic media conditions and sequential cell culture.
Collapse
Key Words
- Adherent
- Automation
- BOM, bill of materials
- CFD, computational fluid dynamics
- Cell culture
- DMEM, Dulbecco’s modified Eagle’s medium
- EUR, Euro
- FDM, fused deposition modelling
- MCU, microcontroller unit
- MOSFET, metal oxide semiconductor field effect transistor
- Microplate
- Millifluidic
- PBS, phosphate-buffered saline
- PCB, printed circuit board
- PWM, pulse width modulation
- Perfusion
- hIPSC, human induced pluripotent stem cell
Collapse
|
7
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
8
|
Xu Q, Ying P, Ren J, Kong N, Wang Y, Li YG, Yao Y, Kaplan DL, Ling S. Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:411-429. [PMID: 33138695 DOI: 10.1089/ten.teb.2020.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urgent demand for transplanted organs has motivated the development of regenerative medicine to biomimetically reconstruct the structure and function of natural tissues or organs. The prerequisites for constructing multicellular organs include specific cell sources, suitable scaffolding material, and interconnective biofunctional interfaces. As some of the most complex systems in nature, human organs, tissues, and cellular units have unique "bio-matrix" physicochemical interfaces. Human tissues support a large number of cells with distinct biofunctional interfaces for compartmentalization related to metabolism, material exchange, and physical barriers. These naturally shaped biofunctional interfaces support critical metabolic functions that drive adaptive human behavior. In contrast, mutations and disorders during organogenesis can disrupt these interfaces as a consequence of disease and trauma. To replicate the appropriate structure and physiological function of tissues and organs, the biomaterials used in these approaches should have properties that mimic those of natural biofunctional interfaces. In this review, the focus is on the biomimetic design of functional interfaces and hierarchical structures for four regenerative organs, liver, kidney, lung, heart, and the immune system. Research on these organs provides understanding of cell-matrix interactions for hierarchically bioinspired material engineering, and guidance for the design of bioartificial organs. Finally, we provide perspectives on future challenges in biofunctional interface designs and discuss the obstacles that remain toward the generation of functional bioartificial organs.
Collapse
Affiliation(s)
- Quanfu Xu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Ying
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
9
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
10
|
Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2020; 246:317-331. [PMID: 32938227 PMCID: PMC7859673 DOI: 10.1177/1535370220959598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.
Collapse
Affiliation(s)
- Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexandre Js Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Abbey D, Elwyn S, Hand NJ, Musunuru K, Rader DJ. Self-Organizing Human Induced Pluripotent Stem Cell Hepatocyte 3D Organoids Inform the Biology of the Pleiotropic TRIB1 Gene. Hepatol Commun 2020; 4:1316-1331. [PMID: 32923835 PMCID: PMC7471428 DOI: 10.1002/hep4.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Establishment of a physiologically relevant human hepatocyte‐like cell system for in vitro translational research has been hampered by the limited availability of cell models that accurately reflect human biology and the pathophysiology of human disease. Here we report a robust, reproducible, and scalable protocol for the generation of hepatic organoids from human induced pluripotent stem cells (hiPSCs) using short exposure to nonengineered matrices. These hepatic organoids follow defined stages of hepatic development and express higher levels of early (hepatocyte nuclear factor 4A [HNF4A], prospero‐related homeobox 1 [PROX1]) and mature hepatic and metabolic markers (albumin, asialoglycoprotein receptor 1 [ASGR1], CCAAT/enhancer binding protein α [C/EBPα]) than two‐dimensional (2D) hepatocyte‐like cells (HLCs) at day 20 of differentiation. We used this model to explore the biology of the pleiotropic TRIB1 (Tribbles‐1) gene associated with a number of metabolic traits, including nonalcoholic fatty liver disease and plasma lipids. We used genome editing to delete the TRIB1 gene in hiPSCs and compared TRIB1‐deleted iPSC‐HLCs to isogenic iPSC‐HLCs under both 2D culture and three‐dimensional (3D) organoid conditions. Under conventional 2D culture conditions, TRIB1‐deficient HLCs showed maturation defects, with decreased expression of late‐stage hepatic and lipogenesis markers. In contrast, when cultured as 3D hepatic organoids, the differentiation defects were rescued, and a clear lipid‐related phenotype was noted in the TRIB1‐deficient induced pluripotent stem cell HLCs. Conclusion: This work supports the potential of genome‐edited hiPSC‐derived hepatic 3D organoids in exploring human hepatocyte biology, including the functional interrogation of genes identified through human genetic investigation.
Collapse
Affiliation(s)
- Deepti Abbey
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Susannah Elwyn
- Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Kiran Musunuru
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Division of Cardiology and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
12
|
Miyoshi H, Iwamoto A, Koyama T. Growth and albumin secretion of mouse fetal liver cells cryopreserved within porous polymer scaffolds as a viable cell source for bioartificial livers. J Biosci Bioeng 2020; 130:212-216. [PMID: 32312490 DOI: 10.1016/j.jbiosc.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023]
Abstract
To clinically apply bioartificial livers (BALs), an effective liver cell cryopreservation method is required for a stable cell supply. In this study, we performed tissue-engineered construct (TEC) cryopreservation of fetal liver cells (FLCs) in which FLCs cultured within a porous polymer scaffold were cryopreserved. Growth and albumin secretion in TEC-cryopreserved FLCs after thawing were compared to freshly isolated FLCs (control experiments). The effect of preculture duration prior to cryopreservation (0-3 weeks) on these functions was also examined. In the three-dimensional cultures, the TEC-cryopreserved FLCs with preculturing showed constant growth, and this growth was comparable to controls. On the contrary, the TEC-cryopreserved FLCs without preculturing did not proliferate after thawing. Albumin secretion of TEC-cryopreserved FLCs with preculturing rapidly increased up to day 12 and high secretory activity comparable to controls was maintained thereafter in FLCs with 1- or 2-week preculturing, suggesting this as an appropriate preculture duration. Compared to conventionally cryopreserved FLCs, growth and albumin secretion in the TEC-cryopreserved FLCs were significantly higher, indicating their usefulness as a potent cell source for BALs.
Collapse
Affiliation(s)
- Hirotoshi Miyoshi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Ayako Iwamoto
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshie Koyama
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
13
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Ong LJY, Ching T, Chong LH, Arora S, Li H, Hashimoto M, DasGupta R, Yuen PK, Toh YC. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. LAB ON A CHIP 2019; 19:2178-2191. [PMID: 31179467 DOI: 10.1039/c9lc00160c] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multi-organ perfusion systems offer the unique opportunity to mimic different physiological systemic interactions. However, existing multi-organ culture platforms have limited flexibility in specifying the culture conditions, device architectures, and fluidic connectivity simultaneously. Here, we report a modular microfluidic platform that addresses this limitation by enabling easy conversion of existing microfluidic devices into tissue and fluid control modules with self-aligning magnetic interconnects. This enables a 'stick-n-play' approach to assemble planar perfusion circuits that are amenable to both bioimaging-based and analytical measurements. A myriad of tissue culture and flow control TILE modules were successfully constructed with backward compatibility. Finally, we demonstrate applications in constructing recirculating multi-organ systems to emulate liver-mediated bioactivation of nutraceuticals and prodrugs to modulate their therapeutic efficacies in the context of atherosclerosis and cancer. This platform greatly facilitates the integration of existing organs-on-chip models to provide an intuitive and flexible way for users to configure different multi-organ perfusion systems.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, 117583, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Organ-on-a-chip technology: turning its potential for clinical benefit into reality. Drug Discov Today 2019; 24:1217-1223. [DOI: 10.1016/j.drudis.2019.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
|
16
|
Murphy C, Feifel E, Jennings P, Gstraunthaler G, Wilmes A. A Protocol for One-Step Differentiation of Human Induced Pluripotent Stem Cells into Mature Podocytes. Methods Mol Biol 2019; 1994:93-99. [PMID: 31124107 DOI: 10.1007/978-1-4939-9477-9_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the glomerulus, podocytes are highly specialized visceral epithelial cells that are part of the glomerular filtration barrier. Human podocyte cell culture is rather challenging for primary or immortalized cells, due to the nonproliferative state of the cells. In addition, rapid dedifferentiation is often observed. Hence, iPSC-derived podocytes offer an exciting alternative to culture podocyte-like cells from different donors over prolonged time. Here we report a simple and rapid one-step protocol that drives iPSC into podocyte-like cells in 10 days.
Collapse
Affiliation(s)
- Cormac Murphy
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Mobarra N, Soleimani M, Ghayour‐Mobarhan M, Safarpour S, Ferns GA, Pakzad R, Pasalar P. Hybrid poly‐
l
‐lactic acid/poly(ε‐caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell‐derived hepatocyte‐like cells. J Cell Physiol 2018; 234:11247-11255. [DOI: 10.1002/jcp.27779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Naser Mobarra
- Department of Laboratory Sciences School of Paramedical Sciences, Mashhad University of Medical Sciences Mashhad Iran
- Department of Clinical Biochemistry School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Stem Cell Research Center, Golestan University of Medical Sciences Gorgan Iran
| | - Masoud Soleimani
- Department of Hematology School of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Samaneh Safarpour
- Department of Clinical Biochemistry School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton and Sussex Medical School, Division of Medical Education Brighton UK
| | - Reza Pakzad
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital Tehran Iran
- Department Biostatistics Faculty of Health, Ilam University of Medical Sciences Ilam Iran
- Department of Epidemiology Faculty of Health, Ilam University of Medical Sciences Ilam Iran
| | - Parvin Pasalar
- Metabolic Disorder Research Center, Endocrinology and Metabolism, Molecular Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
18
|
Kammerer S, Küpper JH. Human hepatocyte systems for in vitro toxicology analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/jcb-179012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| |
Collapse
|
19
|
Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater 2018; 78:151-164. [PMID: 30071351 DOI: 10.1016/j.actbio.2018.07.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Engineering of functional vascularized liver tissues holds great promise in addressing donor organ shortage for transplantation. Whole organ decellularization is a cell removal method that retains the native vascular structures of the organ such that it can be anastomosed with the recipient circulation after recellularization with healthy cells. However, a main hurdle to successful implantation of bioengineered organ is the inability to efficiently re-endothelialize the vasculature with a functional endothelium, resulting in blood clotting which is the primary cause of failure in early transplant studies. Here, we present an efficient approach for enhancing re-endothelialization of decellularized rat liver scaffolds by conjugating the REDV cell-binding domain to improve attachment of endothelial cells (EC) on vascular wall surfaces. In order to facilitate expression and purification of the peptide, REDV was fused with elastin-like peptide (ELP) that confers thermally triggered aggregation behavior to the fusion protein. After validating the adhesive properties of the REDV-ELP peptide, we covalently coupled REDV-ELP to the blood vasculature of decellularized rat livers and seeded EC using perfusion of the portal vein. We showed that REDV-ELP increased cell attachment, spreading and proliferation of EC within the construct resulting in uniform endothelial lining of the scaffold vasculature. We further observed that REDV-ELP conjugation dramatically reduced platelet adhesion and activation. Altogether, our results demonstrate that this method allowed functional re-endothelialization of liver scaffold and show great potential toward the generation of functional bioengineered liver for long-term transplantation. STATEMENT OF SIGNIFICANCE There is a critical need for novel organ replacement therapies as the grafts for transplantation fall short of demand. Recent advances in tissue engineering, through the use of decellularized scaffolds, have opened the possibility that engineered grafts could be used as substitutes for donor livers. However, successful implantation has been challenged by the inability to create a functional vasculature. Our research study reports a new strategy to increase efficiency of endothelialization by increasing the affinity of the vascular matrix for endothelial cells. We functionalized decellularized liver scaffold using elastin-like peptides grafted with REDV cell binding domain. We showed that REDV-ELP conjugation improve endothelial cell attachment and proliferation within the scaffold, demonstrating the feasibility of re-endothelializing a whole liver vasculature using our technique.
Collapse
|
20
|
Starokozhko V, Hemmingsen M, Larsen L, Mohanty S, Merema M, Pimentel RC, Wolff A, Emnéus J, Aspegren A, Groothuis G, Dufva M. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering. J Tissue Eng Regen Med 2018; 12:1273-1284. [PMID: 29499107 PMCID: PMC5969064 DOI: 10.1002/term.2659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted in slightly lower activity of some of the Phase I metabolism enzymes. Gene expression data indicate that hiPSCs differentiated into both hepatic and biliary directions. In conclusion, the hiPSC differentiated under flow conditions towards hepatocytes express a wide spectrum of liver functions at levels comparable with hPCLS indicating excellent future perspectives for the development of a bioartificial liver system for toxicity testing or as liver support device for patients.
Collapse
Affiliation(s)
- Viktoriia Starokozhko
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Mette Hemmingsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Layla Larsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Marjolijn Merema
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Rodrigo C. Pimentel
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Anders Wolff
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Jenny Emnéus
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Geny Groothuis
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Martin Dufva
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| |
Collapse
|