1
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Uchida K, Katsuyama M, Waditee-Sirisattha R, Kageyama H, Matsusaki M, Palaga T. Characterization of macrophages associated with human skin models exposed to UV radiation. Commun Biol 2024; 7:1284. [PMID: 39379484 PMCID: PMC11461876 DOI: 10.1038/s42003-024-06975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Skin macrophages play important roles in the response to external stimuli. Human skin equivalents (HSEs) incorporating the human monocytic cell line THP-1 were fabricated to generate immunocompetent human skin models. These HSEs were used to investigate the influence of the skin microenvironment and ultraviolet A (UVA) on macrophages. Transcriptomic analysis revealed that THP-1 cells in HSEs were enriched in extracellular matrix interaction hallmark but downregulated in DNA replication hallmark. Upon UVA exposure, immunocompetent HSEs presented epidermal distortion and increased DNA double-strand breaks (DSBs). The genes associated with oxidative stress and the inflammatory response were significantly upregulated in THP-1 cells. When the photoprotective agent mycosporine-2-glycine from cyanobacteria was applied to HSEs, the incidence of UVA-induced DSBs was significantly lower, and inflammatory and UV response hallmarks were downregulated in THP-1 cells. Taken together, these results suggest that immunocompetent HSEs can be used to investigate the responses of skin-resident macrophages to external stimuli.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | | | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Chang CC, Wang YJ, Huang L, Chen IL, Shih YC, Shen JW, Lu ME, Chiang HM, Lin BS, Wu YH. Photoaging features of melasma: An in vivo layered and quantitative analysis using computer-aided detection of cellular resolution full-field optical coherence tomography. J Eur Acad Dermatol Venereol 2024; 38:e870-e873. [PMID: 38511971 DOI: 10.1111/jdv.19971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Chang-Cheng Chang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
- School of Medicine, College of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Aesthetic Medical Centre, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Jen Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ling Huang
- Apollo Medical Optics, Ltd., Taipei, Taiwan
| | | | | | - Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Meng-En Lu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| | - Yu-Hung Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
3
|
Lombardi F, Augello FR, Ciafarone A, Ciummo V, Altamura S, Cinque B, Palumbo P. 3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review. Biomolecules 2024; 14:1066. [PMID: 39334833 PMCID: PMC11430810 DOI: 10.3390/biom14091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, "skin-on-chip" technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Alessia Ciafarone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Valeria Ciummo
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Serena Altamura
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| |
Collapse
|
4
|
De Los Santos Gomez P, Costello L, Goncalves K, Przyborski S. Comparison of photodamage in non-pigmented and pigmented human skin equivalents exposed to repeated ultraviolet radiation to investigate the role of melanocytes in skin photoprotection. Front Med (Lausanne) 2024; 11:1355799. [PMID: 38698778 PMCID: PMC11063240 DOI: 10.3389/fmed.2024.1355799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure. Methods Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin. Results We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling. Discussion We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection.
Collapse
Affiliation(s)
| | - Lydia Costello
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd., Glasgow, United Kingdom
| |
Collapse
|
5
|
Ahn M, Cho WW, Park W, Lee JS, Choi MJ, Gao Q, Gao G, Cho DW, Kim BS. 3D biofabrication of diseased human skin models in vitro. Biomater Res 2023; 27:80. [PMID: 37608402 PMCID: PMC10464270 DOI: 10.1186/s40824-023-00415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models. To explain human skin modeling with pathological hallmarks, we first summarize the structural and functional characteristics of healthy human skin. We then provide an extensive overview of how to recreate diseased human skin models in vitro, including models for wounded, diabetic, skin-cancer, atopic, and other pathological skin types. We conclude with an outlook on diseased-skin modeling and its technical perspective for the further development of skin engineering.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Min-Ju Choi
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea.
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
6
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
7
|
Freer M, Darling N, Goncalves K, Mills KJ, Przyborski S. Development of a mammalian neurosensory full-thickness skin equivalent and its application to screen sensitizing stimuli. Bioeng Transl Med 2023; 8:e10484. [PMID: 37206205 PMCID: PMC10189474 DOI: 10.1002/btm2.10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Human skin equivalents (HSEs) are an increasingly popular research tool due to limitations associated with animal testing for dermatological research. They recapitulate many aspects of skin structure and function, however, many only contain two basic cell types to model dermal and epidermal compartments, which limits their application. We describe advances in the field skin tissue modeling to produce a construct containing sensory-like neurons that is responsive to known noxious stimuli. Through incorporation of mammalian sensory-like neurons, we were able to recapitulate aspects of the neuroinflammatory response including secretion of substance P and a range of pro-inflammatory cytokines in response to a well-characterized neurosensitizing agent: capsaicin. We observed that neuronal cell bodies reside in the upper dermal compartment with neurites extending toward the keratinocytes of the stratum basale where they exist in close proximity to one another. These data suggest that we are able to model aspects of the neuroinflammatory response that occurs during exposure to dermatological stimuli including therapeutics and cosmetics. We propose that this skin construct can be considered a platform technology with a wide range of applications including screening of actives, therapeutics, modeling of inflammatory skin diseases, and fundamental approaches to probe underlying cell and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell Europe LtdGlasgowUK
| |
Collapse
|
8
|
La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA, Imparato G. Colorectal Cancer Bioengineered Microtissues as a Model to Replicate Tumor-ECM Crosstalk and Assess Drug Delivery Systems In Vitro. Int J Mol Sci 2023; 24:5678. [PMID: 36982752 PMCID: PMC10059762 DOI: 10.3390/ijms24065678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC μTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma μTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma μTs to achieve the 3D CRC μTs. Morphological characterization of the 3D CRC μTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC μTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.
Collapse
Affiliation(s)
- Alessia La Rocca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, 80126 Naples, Italy
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| |
Collapse
|
9
|
Kiyoi T, Liu S, Takemasa E, Hato N, Mogi M. Intermittent environmental exposure to hydrogen prevents skin photoaging through reduction of oxidative stress. Geriatr Gerontol Int 2023; 23:304-312. [PMID: 36807963 DOI: 10.1111/ggi.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
AIM Molecular hydrogen is not only expected to be used as an energy-generating resource, but also to have preventive effects on a variety of clinical manifestations related to oxidative stress through scavenging radicals or regulating gene expression. In the current study, we investigated the influence of intermittent environmental exposure to hydrogen gas at a safe concentration (1.3%) on photoaging using an ultraviolet A (UVA)-irradiated murine model. METHODS To mimic the expected human daily activity cycle, UVA exposure in the daytime and hydrogen exposure in the night-time, an original design, UVA-transmission, hydrogen-exposure system was established. Mice were bred under experimental conditions of UVA irradiation and normal air for 8 h (outdoor time 09.00-17.00 hours), and UVA non-irradiation and inhalation of hydrogen gas for 16 h (indoor time 17.00-09.00 hours), and the daily cycle was continued for up to 6 weeks. The progression of photoaging, including morphological changes, collagen degradation and UVA-related DNA damage, was evaluated. RESULTS Intermittent administration of hydrogen gas by our system prevented UVA-induced epidermal signs, such as hyperplasia, melanogenesis and appearance of senescence cells, and UVA-induced dermal signs, such as collagen degradation. In addition, we detected attenuation of DNA damage in the hydrogen exposure group as indirect evidence that intermittent exposure to hydrogen gas reduced oxidative stress. CONCLUSIONS Our findings support the notion that long-term, intermittent environmental exposure to hydrogen gas in daily life has a beneficial effect on UVA-induced photoaging. Geriatr Gerontol Int 2023; ••: ••-••.
Collapse
Affiliation(s)
- Takeshi Kiyoi
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Tohon, Japan
| | - Erika Takemasa
- Department of Pharmacology, Ehime University Graduate School of Medicine, Tohon, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Tohon, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Tohon, Japan
| |
Collapse
|
10
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
11
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Evaluation of in vitro human skin models for studying effects of external stressors and stimuli and developing treatment modalities. VIEW 2022. [DOI: 10.1002/viw.20210012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emily Sutterby
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Peter Thurgood
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia
| | | | - Elena Pirogova
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
12
|
Costello L, Dicolandrea T, Tasseff R, Isfort R, Bascom C, von Zglinicki T, Przyborski S. Tissue engineering strategies to bioengineer the ageing skin phenotype in vitro. Aging Cell 2022; 21:e13550. [PMID: 35037366 PMCID: PMC8844123 DOI: 10.1111/acel.13550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Human skin ageing is a complex and heterogeneous process, which is influenced by genetically determined intrinsic factors and accelerated by cumulative exposure to extrinsic stressors. In the current world ageing demographic, there is a requirement for a bioengineered ageing skin model, to further the understanding of the intricate molecular mechanisms of skin ageing, and provide a distinct and biologically relevant platform for testing actives and formulations. There have been many recent advances in the development of skin models that recapitulate aspects of the ageing phenotype in vitro. This review encompasses the features of skin ageing, the molecular mechanisms that drive the ageing phenotype, and tissue engineering strategies that have been utilised to bioengineer ageing skin in vitro.
Collapse
Affiliation(s)
| | | | - Ryan Tasseff
- Procter and Gamble Mason Business Center Cincinnati Ohio USA
| | - Robert Isfort
- Procter and Gamble Mason Business Center Cincinnati Ohio USA
| | - Charlie Bascom
- Procter and Gamble Mason Business Center Cincinnati Ohio USA
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Sciences Newcastle University Newcastle Upon Tyne UK
| | - Stefan Przyborski
- Department of Biosciences Durham University Durham UK
- Reprocell Europe Glasgow, Durham UK
| |
Collapse
|
13
|
Valerio HP, Ravagnani FG, Ronsein GE, Di Mascio P. A single dose of Ultraviolet-A induces proteome remodeling and senescence in primary human keratinocytes. Sci Rep 2021; 11:23355. [PMID: 34857819 PMCID: PMC8639817 DOI: 10.1038/s41598-021-02658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Epidermal photoaging contributes to skin fragility over time and it is a risk factor for skin cancer. Photoaging has been associated for a long time with exposure to Ultraviolet-A (UVA) light, the predominant component of the solar ultraviolet radiation. While the cellular mechanisms underlying UVA-induced photoaging in the dermis have been well characterized, UVA's action on the epidermis remains elusive. Here, proteomic analysis was conducted to derive the cellular responses induced by an environmentally relevant dose of UVA in primary human keratinocytes. We also investigated the effects of UVA on non-transformed immortalized keratinocytes (HaCaT cells), bearing potentially oncogenic mutations. We showed that UVA induces proteome remodeling and senescence in primary keratinocytes, eliciting potent antioxidant and pro-inflammatory responses. Additionally, we showed that UVA modulates the secretory phenotype of these cells to the extent of inducing paracrine oxidative stress and immune system activation in pre-malignant keratinocytes. These observations offer insights into the cellular mechanisms by which UVA drives photoaging in the skin.
Collapse
Affiliation(s)
- Hellen Paula Valerio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Felipe Gustavo Ravagnani
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
14
|
Souza C, Jayme CC, Rezende N, Tedesco AC. Synergistic effect of photobiomodulation and phthalocyanine photosensitizer on fibroblast signaling responses in an in vitro three-dimensional microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112256. [PMID: 34330080 DOI: 10.1016/j.jphotobiol.2021.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Photobiomodulation (PBM) is a promising medical treatment modality in the area of photodynamic therapy (PDT). In this study, we investigated the effect of combined therapy in a 3D microenvironment using aluminum chloride phthalocyanines (AlClPc) as the photosensitizing agent. Normal human fibroblast-containing collagen biomatrix was prepared and treated with an oil-in-water (o/a) AlClPc-loaded nanoemulsion (from 0.5 to 3.0 μM) and irradiated at a range of fluences (from 0.1 to 3.0 J/cm2) using a continuous-wave light-emitting diode (LED) irradiation system (660 nm). PBM at 1.2 J/cm2 and AlClPc/NE at 0.5 μM modified the fibroblast signaling response under 3D conditions, promoting collagen synthesis, ROS production, MMP-9 secretion, proliferation of the actin network, and facile myofibroblastic differentiation. PBM alone (at 1.2 J/cm2 and 0.3 J/cm2) had no significant effect on any of these parameters. The combined therapy affected myofibroblastic differentiation, inflammatory response, and extracellular matrix pliability, and should thus be examined further in subsequent studies considering that no side effects of PBM have been reported. Even though significant progress has been made in the field of phototherapy in recent years, it is necessary to further elucidate the detailed mechanisms underlying its effects already shown in 2D conditions to increase the acceptance of this beneficial and non-invasive therapeutic approach.
Collapse
Affiliation(s)
- Carla Souza
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Nayara Rezende
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
15
|
Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 2020; 23:1-9. [PMID: 33189572 DOI: 10.1016/j.jcyt.2020.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.
Collapse
|
16
|
Liao AH, Cai YL, Chuang HC, Lee CY, Lin YC, Chiang CP. Application of ultrasound-mediated adapalene-coated lysozyme-shelled microbubbles in UVA-induced skin photoaging. PLoS One 2020; 15:e0232617. [PMID: 32438389 PMCID: PMC7242023 DOI: 10.1371/journal.pone.0232617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/18/2020] [Indexed: 01/30/2023] Open
Abstract
Photoaging, the premature aging of skin induced by ultraviolet rays, is characterized by wrinkling, roughness, laxity, and pigmentary changes. Various natural and synthetic retinoids have been explored for the treatment of aging. Among retinoids, adapalene (Ada, 0.3%) is one of the most potent and widely used drugs to treat photoaging. However, it causes irritant reactions that limit its acceptance by patients. Several studies have shown the applicability of Lysozyme (Lys)-shelled microbubbles (MBs) for drug delivery through sonophoresis, and recently we have shown its efficiency to treat inflammatory skin disease. Here, we report the construction of novel Ada-LysMBs based on opposite electric charges for combined effects to treat photoaging. The Ada-LysMBs were self-assembled and had a mean diameter of 2857 nm. The maximum loading efficiency of Ada onto LysMBs was 13.99 ± 0.59%. An acoustic power density of 3 W/cm2 for 1 min revealing maximum penetration depth of LysMBs was optimized for further in vitro and in vivo studies of Ada-LysMBs. It was observed that in vitro Ada release from Ada-LysMBs at 6 h after ultrasound (US) treatment was more rapid at pH 7.4 (82%) than at pH 5.5 (73%). Franz diffusion experiments on isolated porcine skin indicated that US approximately doubled Ada delivery by Ada-LysMBs and Ada + LysMBs at 12 h and six-fold Lys permeation by LysMBs at 6 h, compared to these treatments alone. A 5-week in vivo study in mice identified significant wrinkle reduction in animals treated with US plus Ada-LysMBs. Our findings indicate that US may be used with Ada-LysMBs in the water phase to treat photoaging by normalizing hyperkeratinization and promoting collagen synthesis.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Medical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - You-Lin Cai
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, Taiwan
| | - Ho-Chaio Chuang
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, Taiwan
| | - Cheng-Ying Lee
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (YL); (CC)
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (YL); (CC)
| |
Collapse
|
17
|
Souza C, Mônico DA, Tedesco AC. Implications of dichlorofluorescein photoinstability for detection of UVA-induced oxidative stress in fibroblasts and keratinocyte cells. Photochem Photobiol Sci 2020; 19:40-48. [DOI: 10.1039/c9pp00415g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pre-incubation with 10 μM DCFDA for 30 min in PBS was sufficient to generate a sensitive and reproducible standard curve for detection of UVA-induced ROS in HaCaT and HPF cells, with no effects on cell viability or morphology.
Collapse
Affiliation(s)
- Carla Souza
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Danielli Azevedo Mônico
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Antonio Claudio Tedesco
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| |
Collapse
|
18
|
Battisti M, Vecchione R, Casale C, Pennacchio FA, Lettera V, Jamaledin R, Profeta M, Di Natale C, Imparato G, Urciuolo F, Netti PA. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front Bioeng Biotechnol 2019; 7:296. [PMID: 31781550 PMCID: PMC6856554 DOI: 10.3389/fbioe.2019.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Transdermal drug delivery represents an appealing alternative to conventional drug administration systems. In fact, due to their high patient compliance, the development of dissolvable and biodegradable polymer microneedles has recently attracted great attention. Although stamp-based procedures guarantee high tip resolution and reproducibility, they have long processing times, low levels of system engineering, are a source of possible contaminants, and thermo-sensitive drugs cannot be used in conjunction with them. In this work, a novel stamp-based microneedle fabrication method is proposed. It provides a rapid room-temperature production of multi-compartmental biodegradable polymeric microneedles for controlled intradermal drug release. Solvent casting was carried out for only a few minutes and produced a short dissolvable tip made of polyvinylpyrrolidone (PVP). The rest of the stamp was then filled with degradable poly(lactide-co-glycolide) (PLGA) microparticles (μPs) quickly compacted with a vapor-assisted plasticization. The outcome was an array of microneedles with tunable release. The ability of the resulting microneedles to indent was assessed using pig cadaver skin. Controlled intradermal delivery was demonstrated by loading both the tip and the body of the microneedles with model therapeutics; POXA1b laccase from Pleurotus ostreatus is a commercial enzyme used for the whitening of skin spots. The action and indentation of the enzyme-loaded microneedle action were assessed in an in vitro skin model and this highlighted their ability to control the kinetic release of the encapsulated compound.
Collapse
Affiliation(s)
- Mario Battisti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Fabrizio A. Pennacchio
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Martina Profeta
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Salerno A, Cesarelli G, Pedram P, Netti PA. Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs. J Clin Med 2019; 8:E1816. [PMID: 31683796 PMCID: PMC6912533 DOI: 10.3390/jcm8111816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
Engineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds. Modular TE is an intriguing approach that aims to design and fabricate ECM-mimicking scaffolds by the bottom-up assembly of building blocks with specific composition, morphology and structural properties. This review provides an overview of the main strategies to build synthetic TE scaffolds through bioactive modules assembly and classifies them into two distinct schemes based on microparticles (µPs) or patterned layers. The µPs-based processes section starts describing novel techniques for creating polymeric µPs with desired composition, morphology, size and shape. Later, the discussion focuses on µPs-based scaffolds design principles and processes. In particular, starting from random µPs assembly, we will move to advanced µPs structuring processes, focusing our attention on technological and engineering aspects related to cell-free and cell-laden strategies. The second part of this review article illustrates layer-by-layer modular scaffolds fabrication based on discontinuous, where layers' fabrication and assembly are split, and continuous processes.
Collapse
Affiliation(s)
- Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
| | - Giuseppe Cesarelli
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy.
| |
Collapse
|
20
|
Occupational Exposure to Solar UV Radiation of a Group of Fishermen Working in the Italian North Adriatic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16163001. [PMID: 31434335 PMCID: PMC6719225 DOI: 10.3390/ijerph16163001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Occupational solar radiation exposure is a relevant heath risk in the fishing sector. Our aim was to provide a detailed evaluation of individual UV exposure in three different fishing activities in Italy, with personal UV dosimeters and a simple formula to calculate the fraction of ambient erythemal UV dose received by the workers. The potential individual UV exposure of the fishermen was between 65 and 542 Joules/m2. The percentages of the ambient exposure were estimated between 2.5% and 65.3%. Workers’ UV exposure was mainly influenced by the characteristics of the work activity, the postures adopted, and the type of boats. Overall, our data showed that 43% of the daily measurements could result largely above the occupational limits of 1–1.3 standard erythemal dose (i.e., 100 Joules/m2) per day, in case of exposure of uncovered skin areas. Measurements of individual UV exposure are important not only to assess the risk but also to increase workers’ perception and stimulate the adoption of preventive measures to reduce solar UV risk. Furthermore, the simple method proposed, linking ambient erythemal UV dose to the workers’ exposure, can be a promising tool for a reliable assessment of the UV risk, as time series of environmental UV dose are widely available.
Collapse
|