1
|
Teale MA, Schneider SL, Seidel S, Krasenbrink J, Poggel M, Eibl D, Sousa MFQ, Eibl R. Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 2. Appl Microbiol Biotechnol 2025; 109:38. [PMID: 39912924 PMCID: PMC11802622 DOI: 10.1007/s00253-024-13373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 02/07/2025]
Abstract
The manufacturing of allogeneic cell therapeutics based on human-induced pluripotent stem cells (hiPSCs) holds considerable potential to revolutionize the accessibility and affordability of modern healthcare. However, achieving the cell yields necessary to ensure robust production hinges on identifying suitable and scalable single-use (SU) bioreactor systems. While specific stirred SU bioreactor types have demonstrated proficiency in supporting hiPSC expansion at L-scale, others, notably instrumented SU multiplate and fixed-bed bioreactors, remain relatively unexplored. By characterizing these bioreactors using both computational fluid dynamics and experimental bioengineering methods, operating ranges were identified for the Xpansion® 10 and Ascent™ 1 m2 bioreactors in which satisfactory hiPSC expansion under serum-free conditions was achieved. These operating ranges were shown not only to effectively limit cell exposure to wall shear stress but also facilitated sufficient oxygen transfer and mixing. Through their application, almost 5 × 109 viable cells could be produced within 5 days, achieving expansion factors of up to 35 without discernable impact on cell viability, identity, or differentiation potential. Key Points •Bioengineering characterizations allowed the identification of operating ranges that supported satisfactory hiPSC expansion •Both the Xpansion® 10 multiplate and Ascent™ 1 m2 fixed-bed reactor accommodated the production of almost 5 × 109 viable cells within 5 days •Exposing the hiPSCs to a median wall shear stress of up to 8.2 × 10-5 N cm-2 did not impair quality.
Collapse
Affiliation(s)
- Misha Alexander Teale
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Samuel Lukas Schneider
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Stefan Seidel
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Jürgen Krasenbrink
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Martin Poggel
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Dieter Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Marcos F Q Sousa
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany.
| | - Regine Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
2
|
Schneider SL, Teale MA, Seidel S, Krasenbrink J, Poggel M, Eibl D, Sousa MFQ, Eibl R. Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1. Appl Microbiol Biotechnol 2025; 109:37. [PMID: 39912916 PMCID: PMC11802619 DOI: 10.1007/s00253-024-13372-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 02/07/2025]
Abstract
To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell-based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II-coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering's suspension criterion ( N s 1 u ), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 109 cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation. KEY POINTS: • N s 1 u can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors • Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion • Perfusion is advantageous and supports the cultivation of hiPSCs.
Collapse
Affiliation(s)
- Samuel Lukas Schneider
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Misha Alexander Teale
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Stefan Seidel
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Jürgen Krasenbrink
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Martin Poggel
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Dieter Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Marcos F Q Sousa
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany.
| | - Regine Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
3
|
Komosa ER, Lin WH, Mahadik B, Bazzi MS, Townsend D, Fisher JP, Ogle BM. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication 2023; 16:014101. [PMID: 37906964 PMCID: PMC10636629 DOI: 10.1088/1758-5090/ad084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
While the field of tissue engineering has progressed rapidly with the advent of 3D bioprinting and human induced pluripotent stem cells (hiPSCs), impact is limited by a lack of functional, thick tissues. One way around this limitation is to 3D bioprint tissues laden with hiPSCs. In this way, the iPSCs can proliferate to populate the thick tissue mass prior to parenchymal cell specification. Here we design a perfusion bioreactor for an hiPSC-laden, 3D-bioprinted chamber with the goal of proliferating the hiPSCs throughout the structure prior to differentiation to generate a thick tissue model. The bioreactor, fabricated with digital light projection, was optimized to perfuse the interior of the hydrogel chamber without leaks and to provide fluid flow around the exterior as well, maximizing nutrient delivery throughout the chamber wall. After 7 days of culture, we found that intermittent perfusion (15 s every 15 min) at 3 ml min-1provides a 1.9-fold increase in the density of stem cell colonies in the engineered tissue relative to analogous chambers cultured under static conditions. We also observed a more uniform distribution of colonies within the tissue wall of perfused structures relative to static controls, reflecting a homogeneous distribution of nutrients from the culture media. hiPSCs remained pluripotent and proliferative with application of fluid flow, which generated wall shear stresses averaging ∼1.0 dyn cm-2. Overall, these promising outcomes following perfusion of a stem cell-laden hydrogel support the production of multiple tissue types with improved thickness, and therefore increased function and utility.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Bhushan Mahadik
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - John P Fisher
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
4
|
Li J, Wu Y, Yao X, Tian Y, Sun X, Liu Z, Ye X, Wu C. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10528-y. [PMID: 37097496 DOI: 10.1007/s12015-023-10528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.
Collapse
Affiliation(s)
- Jinhu Li
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yurou Wu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Yao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Tian
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Sun
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
6
|
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci 2019; 26:87. [PMID: 31660969 PMCID: PMC6819403 DOI: 10.1186/s12929-019-0578-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yueh-Ting Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Cardiovascular Surgery Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|