1
|
Väisänen A, Hoikkala N, Härkönen V, Moritz N, Vallittu PK. Biomechanical considerations of semi-anatomic glass fiber-reinforced (GFRC) composite implant for mandibular segmental defects: A technical note. J Mech Behav Biomed Mater 2024; 156:106604. [PMID: 38810543 DOI: 10.1016/j.jmbbm.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the selected biomechanical properties of semi-anatomic implant plate made of biostable glass fiber-reinforced composite (GFRC) for mandibular reconstruction. Two versions of GFRC plates were tested in vitro loading conditions of a mandible segmental defect model, for determining the level of mechanical stress at the location of fixation screws, and in the body of the plate. METHODS GFRC of bidirectional S3-glass fiber weaves with dimethacrylate resin matrix were used to fabricate semi-anatomic reconstruction plates of two GFRC laminate thicknesses. Lateral surface of the plate followed the contour of the resected part of the bone, and the medial surface was concave allowing for placement of a microvascular bone flap in the next stages of the research. Plates were fixed with screws to a plastic model of the mandible with a large segmental defect in the premolar-molar region. The mandible-plate system was loaded from incisal and molar locations with loads of 10, 50, and 100 N and stress (microstrain, με) at the location of fixation screws and the body of the plate was measured by strain gauges. In total the test set-up had four areas for measuring the stress of the plate. RESULTS No signs of fractures or buckling failures of the plates were found during loading. Strain values at the region of the fixation screws were higher with thick plate, whereas thin plates demonstrated higher strain at the body of the plate. Vertical displacement of the mandible-plate system was proportional to the loading force and was higher with incisal than molar loading locations but no difference was found between thin and thick plates. CONCLUSION GFRC plates withstood the loading conditions up to 100 N even when loaded incisally. Thick plates concentrated the stress to the ramus mandibulae region of the fixation screws whereas the thin plates showed stress concentration in the angulus mandibulae region of the fixation and the plate itself. In general, thin plates caused a lower magnitude of stress to the fixation screw areas than thick plates, suggesting absorption of the loading energy to the body of the plate.
Collapse
Affiliation(s)
- Antti Väisänen
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland.
| | - Niko Hoikkala
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Ville Härkönen
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Niko Moritz
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland; Wellbeing Services, County of South-West Finland, Turku, Finland
| |
Collapse
|
2
|
Westhauser F, Arango-Ospina M, Hupa L, Renkawitz T, Boccaccini AR, Kunisch E. A comparative analysis of the cytocompatibility, protein adsorption, osteogenic and angiogenic properties of the 45S5- and S53P4-bioactive glass compositions. Biomed Mater 2024; 19:025027. [PMID: 38266275 DOI: 10.1088/1748-605x/ad2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Despite their long history of application in orthopedics, the osteogenic and angiogenic properties as well as the cytocompatibility and protein adsorption of the 45S5- (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) and S53P4- (in wt%: 53.0 SiO2, 23.0 Na2O, 20.0 CaO, 4.0 P2O5) bioactive glass (BG) compositions have not yet been directly compared in one and the same experimental setting. In this study, the influence of morphologically equal granules of both BGs on proliferation, viability, osteogenic differentiation and angiogenic response of human bone-marrow-derived mesenchymal stromal cells (BMSCs) was assessed. Furthermore, their impact on vascular tube formation and adsorption of relevant proteins was evaluated. Both BGs showed excellent cytocompatibility and stimulated osteogenic differentiation of BMSCs. The 45S5-BG showed enhanced stimulation of bone morphogenic protein 2 (BMP2) gene expression and protein production compared to S53P4-BG. While gene expression and protein production of vascular endothelial growth factor (VEGF) were stimulated, both BGs had only limited influence on tubular network formation. 45S5-BG adsorbed a higher portion of proteins, namely BMP2 and VEGF, on its surface. In conclusion, both BGs show favorable properties with slight advantages for 45S5-BG. Since protein adsorption on BG surfaces is important for their biological performance, the composition of the proteome formed by osteogenic cells cultured on BGs should be analyzed in order to gain a deeper understanding of the mechanisms that are responsible for BG-mediated stimulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elke Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Kajander K, Sirkiä SV, Vallittu PK, Heino TJ, Määttä JA. Bioactive glasses promote rapid pre-osteoblastic cell migration in contrast to hydroxyapatite, while carbonated apatite shows migration inhibiting properties. Sci Rep 2023; 13:20587. [PMID: 37996563 PMCID: PMC10667509 DOI: 10.1038/s41598-023-47883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Different biomaterials have been clinically used as bone filling materials, although the mechanisms behind the biological effects are incompletely understood. To address this, we compared the effects of five different biomaterials: two bioactive glasses (45S5 and S53P4), hydroxyapatite (HAP), carbonated apatite (CAP), and alumina on the in vitro migration and viability of pre-osteoblastic cells. In addition, we studied the effects of biomaterials' calcium release on cell migration, viability and differentiation. We found differences between the materials as the bioactive glasses promoted rapid pre-osteoblastic cell migration. In contrast, CAP decreased cell migration, which was also associated with lower activity of migration related kinases. Bioactive glasses released significant amounts of calcium into the media, while CAP decreased the calcium concentration. The response of cells to calcium was mechanistically studied by blocking calcium sensing receptor (CaSR) and ATP-gated ion channel P2X7, but this had no effect on cell migration. Surprisingly, HAP and CAP initially decreased cell viability. In summary, bioactive glasses 45S5 and S53P4 had significant and long-lasting effects on the pre-osteoblastic cell migration, which could be related to the observed calcium dissolution. Additionally, bioactive glasses had no negative effects on cell viability, which was observed with HAP and CAP.
Collapse
Affiliation(s)
- Karoliina Kajander
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Saara V Sirkiä
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Terhi J Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jorma A Määttä
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
4
|
Li D, Guo X, Du H, Ding W, Li M, Xu Y. Tetracalcium phosphate/polycaprolactone composite scaffold: Mechanical reinforcement, biodegradability regulation and bioactivity induction. J Mech Behav Biomed Mater 2023; 147:106144. [PMID: 37748317 DOI: 10.1016/j.jmbbm.2023.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Polycaprolactone (PCL) is considered a potential biomaterial due to its good biocompatibility, but its slow degradability and insufficient mechanical properties limit its wide application in bone tissue engineering. Tetracalcium phosphate's (TTCP) good degradability and inherent high stiffness are expected to compensate for the aforementioned defects of PCL and endow it with good biological activity. This goal of this study was to obtain bioactive PCL composite scaffolds with tuneable degradation properties and good mechanical strength via selective laser sintering technology (SLS). Composite porous scaffolds with TTCP contents of 0%, 5%, 10%, 15%, 20%, and 25% were prepared, and the experimental results showed that the addition of TTCP significantly improved the mechanical properties of the scaffold. Notably, the tensile strength of the composite scaffold with 20% TTCP content reached 15.2 MPa, which was 2.9 times that of pure PCL, and the best flexural strength was found in the scaffold with 15% TTCP content (4.7 MPa). More importantly, the introduced TTCP not only achieved the effective pH regulation of the soaking solution and the promotion of biodegradation, but also provided the scaffold with good bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Xiaoping Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Wenhao Ding
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Mengqi Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| |
Collapse
|
5
|
Tian T, Hu Q, Shi M, Liu C, Wang G, Chen X. The synergetic effect of hierarchical pores and micro-nano bioactive glass on promoting osteogenesis and angiogenesis in vitro. J Mech Behav Biomed Mater 2023; 146:106093. [PMID: 37651757 DOI: 10.1016/j.jmbbm.2023.106093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Hierarchical pores are important structural components of the bone tissue and are closely related to angiogenesis, nutrient transport, and metabolism involved in the repair of a bone defect. Here, we fabricated a composite scaffold having a hierarchical structure, based on micro-nano bioactive glass (MNBG) incorporated into poly (lactic-co-glycolic acid) (PLGA), and with camphene as a pore-forming agent for bone repair. The results showed that camphene formed abundant micropores in the walls of large pores, resulting in hierarchical pore structures ranging from a few microns to a hundred microns. Moreover, there was 2-3 folds increased in compressive modulus and the scaffolds showed a stable degradation rate and a higher degree of apatite crystallization than ordinary porous scaffolds. The results of in vitro studies showed that, when compared to ordinary porous scaffolds, PLGA-MNBG scaffolds with multi-holes could better promote the proliferation of bone marrow mesenchymal stem cells (BMSCs) and the expression of angiogenic marker (CD31) of human umbilical vein endothelial cells (HUVECs).
Collapse
Affiliation(s)
- Ting Tian
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333001, China
| | - Miao Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Cong Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Singh HN, Agrawal S, Kuthe AM. Design of customized implants and 3D printing of symmetric and asymmetric cranial cavities. J Mech Behav Biomed Mater 2023; 146:106061. [PMID: 37544200 DOI: 10.1016/j.jmbbm.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
A methodology has been developed in this work to design customized cranial implants from computed tomography (CT) scan images for symmetric as well as asymmetric defects. The two-dimensional CT scan images were converted into three-dimensional geometric models using software packages. Two cases of cranial cavities at different locations were considered for implant design using two different approaches. Case 1 is having a symmetric cranial cavity while Case 2 has an asymmetric frontal cranial cavity. The craniums with defects were 3D reconstructed. Customized cranial implants were made for the two cases. In Case 1, symmetry was used to design the cranial implant. Symmetry cannot be used in Case 2. In Case 2, the implant was designed by blending from the surface available adjacent to the missing portion of the cranium. 3D reconstructed bone models and customized implants were 3D printed in poly-lactic acid (PLA) using a fused deposition modeling process for form and fit evaluation. Finite element analysis was performed to compare the mechanical behavior of bone, and the two biomaterials - polyether ether ketone (PEEK), and Ti6Al4V. Static structural finite element analysis was performed to simulate the impact of falling off a bicycle with an impact on the cranial implants in the two cases. The load was modeled as a normal force acting on the surface of the implant. It was found that the stresses in the titanium alloy are comparable to those of PEEK for both the cases. However, the strains and deformation were found to be much smaller compared to those in PEEK. Therefore, the titanium alloy is the material of choice for both the cases among the materials under consideration. The designed implants are solid hence may face the challenge in bone ingrowth. In future studies, the implant can be made porous by incorporating a lattice structure to enhance osseointegration and promote bone ingrowth. Implants for both symmetric and asymmetric defect cases in cranium were successfully designed.
Collapse
Affiliation(s)
- Hari Narayan Singh
- Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, India.
| | - Sanat Agrawal
- Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, India
| | - Abhaykumar M Kuthe
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
7
|
Patel D, Tatum SA. Bone Graft Substitutes and Enhancement in Craniomaxillofacial Surgery. Facial Plast Surg 2023; 39:556-563. [PMID: 37473765 DOI: 10.1055/s-0043-1770962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Critical-sized bone defects are a reconstructive challenge, particularly in the craniomaxillofacial (CMF) skeleton. The "gold standard" of autologous bone grafting has been the work horse of reconstruction in both congenital and acquired defects of CMF skeleton. Autologous bone has the proper balance of the protein (or organic) matrix and mineral components with no immune response. Organic and mineral adjuncts exist that offer varying degrees of osteogenic, osteoconductive, osteoinductive, and osteostimulative properties needed for treatment of critical-sized defects. In this review, we discuss the various mostly organic and mostly mineral bone graft substitutes available for autologous bone grafting. Primarily organic bone graft substitutes/enhancers, including bone morphogenic protein, platelet-rich plasma, and other growth factors, have been utilized to support de novo bone growth in setting of critical-sized bone defects. Primarily mineral options, including various calcium salt formulation (calcium sulfate/phosphate/apatite) and bioactive glasses have been long utilized for their similar composition to bone. Yet, a bone graft substitute that can supplant autologous bone grafting is still elusive. However, case-specific utilization of bone graft substitutes offers a wider array of reconstructive options.
Collapse
Affiliation(s)
- Dhruv Patel
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, New York
| | - Sherard A Tatum
- Department of Otolaryngology and Pediatrics, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
8
|
Przybilla P, Subkov E, Latorre SH, Zankovic S, Mayr HO, Killinger A, Schmal H, Seidenstuecker M. Effect of 20 μm thin ceramic coatings of hydroxyapatite, bioglass, GB14 and Beta-Tricalciumphosphate with copper on the biomechanical stability of femoral implants. J Mech Behav Biomed Mater 2023; 144:105951. [PMID: 37295386 DOI: 10.1016/j.jmbbm.2023.105951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (β-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used in this study. Implant fixation was evaluated by measuring shear strength of the implant/bone interface. Quantitative histological analysis was performed for the measurements of bone contact area. Implants with and without copper ions were compared after 24 weeks. Thin coatings of GB14, HA or TCP on titanium implants demonstrated high shear strength during the entire test period of up to 24 weeks. Results confirmed osteointegrative properties of the coatings and did not reveal any negative effect of copper ions on osteointegration. The integration of copper in degradable osteoconductive coatings with a thickness of approx. 20 μm represents a promising method of achieving antibacterial shielding during the entire period of bone healing while at the same time improving osteointegration of the implants.
Collapse
Affiliation(s)
- Philip Przybilla
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany; Department of Orthopaedics and Traumatology, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Eugen Subkov
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Sergio H Latorre
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Sergej Zankovic
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Hermann O Mayr
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Andreas Killinger
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Faculty 07, University of Stuttgart, Allmandring 7b, 70569, Stuttgart, Germany
| | - Hagen Schmal
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Sivakumar NK, Palaniyappan S, Sekar V, Alodhayb A, Braim M. An optimization approach for studying the effect of lattice unit cell's design-based factors on additively manufactured poly methyl methacrylate cranio-implant. J Mech Behav Biomed Mater 2023; 141:105791. [PMID: 37004304 DOI: 10.1016/j.jmbbm.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
In craniomaxillofacial surgery the inclusion of lattice structure on the Cranio-implants for the surgical procedure of cranial defects is difficult. Additive manufacturing open ups a huge space for the development of intricate profiles for complex surgical practices. Designing lattice structures with various design topologies has gained more interest in the medical community for reducing the weight of the implants in the cranial region. This research proposes the mimicking of cranial defective portion concerning bone-like porous structure by means of Poly methyl methacrylate (PMMA) material via 3D printing technology. The experiments were optimized by incorporating square-type porous lattice structure in the development of cranial implants. The design-based factors of the unit cell were enhanced with the aid of the Design of experiments (DOE) technique. L9 orthogonal array is developed by incorporating various design-based factors of the lattice unit cell like unit cell size (mm), skewing angle (°), wall thickness (mm), and unit cell orientation (°). The experiments are optimized with respect to obtaining better compressive strength and compressive strength/density of the prepared lattice structure incorporated polymeric samples. The result shows that for obtaining the maximum compressive strength in the porous square lattice-structured PMMA compression samples will be a lower cell size of 2 mm, a higher skewing angle of 30°, a higher wall thickness of 1 mm, and a unit cell orientation of 90°. The experimental optimized condition results of the design-based factors achieve the maximum compressive strength and compressive strength/density of 83.37 MPa and 189.73 MPa/g mm-3. The lattice structure orientated with 90° has a significant contribution towards reducing the development of structural deviations of incorporating square lattice structure on the PMMA polymeric material. Therefore, the topologically modified square lattice structure incorporated 3D printed PMMA material has a potential scope for the replacement of conventional maxillofacial cranial implants.
Collapse
|
10
|
Nalbantoğlu AM, Eren K, Yanik D, Toker H, Tuncer E. Biocompatibility of fiber-reinforced composite (FRC) and woven-coated FRC: an in vivo study. Clin Oral Investig 2023; 27:1023-1033. [PMID: 35939213 DOI: 10.1007/s00784-022-04659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate biocompatibility and bone contact area of FRC and woven-coated FRC (FRC-C) in rats. MATERIALS AND METHODS Sixty rats were allocated to three groups: FRC (n=20), FRC-C (n=20), and control group (n=20). Subgroups were determined as 4th (n=10) and 12th weeks (n=10). The specimens were placed in the femur of rats. In the control group, the bone defects were left empty and sutured. Four and 12 weeks after implantation, the rats were sacrificed. Histopathological examinations were performed in a semi-quantitative manner. Twenty rats (n=20) were used for scanning electron microscopy (SEM) examination. Bone contact surfaces were calculated in SEM analysis. A chi-square test was performed to analyze the data. RESULTS No statistical difference was detected between the 4th and 12th weeks in the quality of bone union. Quality of bone union was lower in FRC compared to the control group in the 4th week (p=0.012) and the 12th week (p=0.017). The periosteal reaction at the 12th week was lower in FRC than in the control group (p=0.021). Bone contact of FRC and FRC-C was 85.5% and 86.3%, respectively. CONCLUSIONS FRC and FRC-C were biocompatible and showed no inflammation. The woven coating did not increase the quality of bone union and bone contact area, while not reducing biocompatibility. CLINICAL RELEVANCE The biocompatibility and good bone response of the woven glass fiber net were demonstrated to have the potential as a scaffold for the augmentation of alveolar bone deficiencies and the reconstruction of maxillofacial defects.
Collapse
Affiliation(s)
- Ahmet Mert Nalbantoğlu
- Department of Periodontology, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Kaya Eren
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Deniz Yanik
- Department of Endodontics, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey.
| | - Hülya Toker
- Department of Periodontology, Faculty of Dentistry, Sağlik Bilimleri University, Ankara, Turkey
| | - Ersin Tuncer
- Department of Pathology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
11
|
Paz-González JA, Velasco-Santos C, Villarreal-Gómez LJ, Alcudia-Zacarias E, Olivas-Sarabia A, Cota-Leal MA, Flores-López LZ, Gochi-Ponce Y. Structural composite based on 3D printing polylactic acid/carbon fiber laminates (PLA/CFRC) as an alternative material for femoral stem prosthesis. J Mech Behav Biomed Mater 2023; 138:105632. [PMID: 36543084 DOI: 10.1016/j.jmbbm.2022.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In recent years, surgical procedures for hip prostheses have increased. These implants are manufactured with materials with high stiffness compared to the bone, causing bone loss or aseptic loosening. This research proposes an alternative structural composite consisting of 3D-printing polylactic acid layers and carbon fiber laminates (PLA/CFRC) with potential application in prosthetic implants. Fourier-transform infrared spectroscopy (FTIR) achieved to characterize starting materials and structural composites revealed secondary chemical interactions between the carbonyl group of PLA with the hydroxyl group of epoxy resin from CFRC. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results show both components (PLA and CFRC) influence the structural composite's thermal behavior, observed in the temperatures of degradation, glass transition, and melting. Furthermore, the composite reached cell viability above 80%, a tensile modulus of 19.29 ± 0.48 GPa and tensile strength of 238.91 ± 25.95 MPa, with mechanical properties very similar to the bone. The results of this study demonstrated that the proposed PLA/CFRC composite can be used as candidate base material for the manufacturing of a hip femoral stem prostheses.
Collapse
Affiliation(s)
- Juan Antonio Paz-González
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, 22500, Tijuana, Mexico; Facultad de Ciencias de la Ingenieria y Tecnologia, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Carlos Velasco-Santos
- Tecnológico Nacional de México, Campus Querétaro, División de Estudios de Posgrado e Investigación, Av. Tecnológico s/n, esq. Gral. Mariano Escobedo, Col. Centro Histórico, 76000, Santiago de Querétaro, Querétaro, Mexico.
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingenieria y Tecnologia, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Enrique Alcudia-Zacarias
- Facultad de Ciencias de la Ingenieria y Tecnologia, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Marcos Alan Cota-Leal
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Lucía Z Flores-López
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, 22500, Tijuana, Mexico
| | - Yadira Gochi-Ponce
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, 22500, Tijuana, Mexico.
| |
Collapse
|
12
|
Khan AA, Zafar MS, Fareed MA, AlMufareh NA, Alshehri F, AlSunbul H, Lassila L, Garoushi S, Vallittu PK. Fiber-reinforced composites in dentistry - An insight into adhesion aspects of the material and the restored tooth construct. Dent Mater 2023; 39:141-151. [PMID: 36604257 DOI: 10.1016/j.dental.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This review aimed to highlight the insight into adhesion aspects within the components of the glass FRC (i.e., fiber and matrix) and between resin luting material and the glass FRC construction. METHODS The fundamentals of semi-interpenetrating polymer network (semi-IPN) based FRCs and their advantages in forming a solid adhesive interface with indirect FRC restoration, dental adhesive, and luting cement are elaborated. The important resin matrix systems and glass fibers used in FRCs are discussed. This is principally based on a survey of the literature over Medline/PubMed, Web of Science, and Scopus databases and a review of the relevant studies and publications in scientific papers in international peer-reviewed journals for the specific topic of biomaterials science. The keywords used for the search approach were: adhesion, fiber-reinforced composite, glass fiber, and semi-interpenetrating polymer network. RESULTS The polymer matrix systems of semi-IPN-based FRCs and formation of secondary-IPN layer are pivotal for bonding of multiphasic indirect dental constructs and repair. Additionally, describing areas of indication for FRCs in dentistry, explaining the adhesion aspects of FRC for the cohesion of the material itself, and for obtaining durable adhesion when the FRC construct is luted to tooth and remaining dentition. Current progress in the field of FRC research and future directions are summarized and presented. SIGNIFICANCE By understanding the isotropic-anisotropic nature of fibers and the interfacial adhesion within the components of the FRC; between resin cement and the FRC construction, the clinically successful FRC-based multiphasic indirect tooth construct can be achieved. The interfacial adhesion within the components of the FRC and between resin luting material and the FRC construction play a key role in adhesion-based unibody dental restorations.
Collapse
Affiliation(s)
- Aftab Ahmed Khan
- Dental Biomaterials Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Medina, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Muhammad Amber Fareed
- Department of Restorative Dentistry, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Nawaf Abdulrahman AlMufareh
- Department of Pediatric Dentistry and Special Health Care Needs, Ministry of Health, Abha Specialist Dental Center, Abha, Saudi Arabia
| | - Faisal Alshehri
- Department of Restorative Sciences, School of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Hanan AlSunbul
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Kalevi Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland; City of Turku Welfare Division, Oral Health Care, Turku, Finland
| |
Collapse
|
13
|
Bioresorbable polylactic acid (PLA) and bioactive glasses (BG) composite: Influence of gold coated of BG powder on mechanical properties and chemical reactivity. J Mech Behav Biomed Mater 2023; 138:105571. [PMID: 36495707 DOI: 10.1016/j.jmbbm.2022.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
Due to the ageing of the population, the synthesis of biomaterials and the optimization of their physico-chemical characteristics are at the heart of many research projects in regenerative medicine. The emergence of 3D printing techniques has rapidly led to the manufacture PLA-BG composite scaffolds using the FFF (Fused Filament Fabrication) technique. However, this composite presents some problems including a lower mechanical strength than the two compounds alone, probably due to the ionic salting-out induced by the BG. This study aims to counter this phenomenon by coating the BG particles with a thin layer of gold. The 3D composite objects will then be characterized mechanically and biologically to ensure that the bioactive character of the composite is preserved.
Collapse
|
14
|
Luoma J, Saarenpää I, Rinne J, Frantzén J, Moritz N, Vallittu PK. Quasi-static loading of glass fiber-reinforced composite cervical fusion cage. J Mech Behav Biomed Mater 2022; 136:105481. [PMID: 36206690 DOI: 10.1016/j.jmbbm.2022.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Anterior decompression and fusion in cervical spine has become one of the most common procedures in neurosurgery. In the surgery, cervical cage implants made of different biomaterials are used. Our purpose was to create a cervical cage made of glass fiber-reinforced composite (FRC) filled with bioactive glass particles and to characterize its behavior in quasi-static compression/shear stress loading conditions. MATERIALS AND METHODS FRC cages (n = 6) were manufactured with 2, 4, 6, 8 and 10 layers of glass fiber laminates and thermoset dimethacrylate resin matrix resulting in wall thickness from 0.70 to 2.1 mm. Control cage was a commercial PEEK cage (CeSpaceXP) implant with asymmetrical wall thickness of up 4.0 mm. Interior of the cage was filled with glass particles of the size 500-1250 μm simulating the bioactive glass which are used in FRC cranial implants. The FRC cages were quasi-statically loaded (compressive/shear stress) at a constant speed of 1 mm/min in the air. RESULTS The average yield strength force (YF) of the control PEEK cage was 3483.6 N (±134.3 N). The average YFs for tested FRC cage with 2, 4, 6, 8 and 10 layers of FRC fabric varied from 1336.5 N (±403.8 N) to 7675.0 N (±670.0 N), respectively. The average ultimate forces (UF) for tested FRC cages varied from 1535.8 N (±406.2 N) to 9975.0 N (±1492.4 N). With six layers of FRC fabric, YF of the FRC cage was comparable to the PEEK implants. CONCLUSIONS In this study, it was demonstrated that it is possible to manufacture a cervical interbody fusion device made of FRC and filled with bioactive glass with proper load bearing capacities. Because of physical properties of FRC-bioactive glass, the FRC cage might have some advances compared to the state-of-the-art cages, like faster bony union and smaller rate of subsidence, which will be studied in the future.
Collapse
Affiliation(s)
- Jaakko Luoma
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.
| | - Ilkka Saarenpää
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Jaakko Rinne
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Janek Frantzén
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Niko Moritz
- Department on Biomaterials Science and Turku Clinical Biomaterials Centre, Institute of Dentistry, University of Turku, Turku, Finland; Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Finland
| | - Pekka K Vallittu
- Department on Biomaterials Science and Turku Clinical Biomaterials Centre, Institute of Dentistry, University of Turku, Turku, Finland; City of Turku, Welfare Division, Turku, Finland
| |
Collapse
|
15
|
Xu Z, Sun Y, Dai H, Ma Y, Bing H. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144535. [PMID: 35889410 PMCID: PMC9318678 DOI: 10.3390/molecules27144535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
The skull defects are challenging to self-heal, and autologous bone graft repair has numerous drawbacks. The scaffolds for the rapid and effective repair of skull defects have become an important research topic. In this study, polyvinyl alcohol (PVA)/β-tricalcium phosphate(β-TCP) composite scaffolds containing icariin (ICA) were prepared through direct-ink three-dimensional (3D) printing technology. β-TCP in the composite scaffold had osteoconductive capability, and the ICA molecule had osteoinductive capacity. The β-TCP and ICA components in the composite scaffold can enhance the capability to repair skull defects. We show that ICA exhibited a slow-release behaviour within 80 days. This behaviour helped the scaffold to continuously stimulate the formation of new bone. The results of in vitro cell compatibility experiments showed that the addition of ICA molecules contributed to the adhesion and proliferation of MC-3T3-E1 cells. The level of alkaline phosphatase secretion demonstrated that the slow release of ICA can promote the osteogenic differentiation of MC-3T3-E1 cells. The introduction of ICA molecules accelerated the in situ bone regeneration in in vivo. It is concluded that the 3D-printed PVA scaffold with β-TCP and ICA has a wide range of potential applications in the field of skull defect treatment.
Collapse
|
16
|
Van Vugt TAG, Heidotting J, Arts JJ, Ploegmakers JJW, Jutte PC, Geurts JAP. Mid-term clinical results of chronic cavitary long bone osteomyelitis treatment using S53P4 bioactive glass: a multi-center study. J Bone Jt Infect 2021; 6:413-421. [PMID: 34804776 PMCID: PMC8600462 DOI: 10.5194/jbji-6-413-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022] Open
Abstract
Introduction: Chronic osteomyelitis is a challenging condition in the orthopedic practice and traditionally treated using local and systemic antibiotics in a two-stage surgical procedure. With the introduction of the antimicrobial biomaterial S53P4 bioactive glass (Bonalive®), chronic osteomyelitis can be treated in a one-stage procedure. This study evaluated the mid-term clinical results of patients treated with S53P4 bioactive glass for long bone chronic osteomyelitis. Methods: In this prospective multi-center study, patients from two different university medical centers in the Netherlands were included. One-stage treatment consisted of debridement surgery, implantation of S53P4 bioactive glass, and treatment with culture-based systemic antibiotics. If required, wound closure by a plastic surgeon was performed. The primary outcome was the eradication of infection, and a secondary statistical analysis was performed on probable risk factors for treatment failure. Results: In total, 78 patients with chronic cavitary long bone osteomyelitis were included. Follow-up was at least 12 months (mean 46; standard deviation, SD, 20), and 69 patients were treated in a one-stage procedure. Overall infection eradication was 85 %, and 1-year infection-free survival was 89 %. Primary closure versus local/muscular flap coverage is the only risk factor for treatment failure. Conclusion: With 85 % eradication of infection, S53P4 bioactive glass is an effective biomaterial in the treatment of chronic osteomyelitis in a one-stage procedure. A major risk factor for treatment failure is the necessity for local/free muscle flap coverage. These results confirm earlier published data, and together with the fundamentally different antimicrobial pathways without antibiotic resistance, S53P4 bioactive glass is a recommendable biomaterial for chronic osteomyelitis treatment and might be beneficial over other biomaterials.
Collapse
Affiliation(s)
- Tom A G Van Vugt
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Jeffrey Heidotting
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jacobus J Arts
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands.,Department of Biomedical Engineering (research group Orthopaedic Biomechanics), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joris J W Ploegmakers
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Paul C Jutte
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jan A P Geurts
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
17
|
Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. MATERIALS 2021; 14:ma14185338. [PMID: 34576562 PMCID: PMC8469313 DOI: 10.3390/ma14185338] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.
Collapse
Affiliation(s)
- Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, p.p.177, HR-10001 Zagreb, Croatia;
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
- Correspondence:
| |
Collapse
|
18
|
Lewin S, Kihlström Burenstam Linder L, Birgersson U, Gallinetti S, Åberg J, Engqvist H, Persson C, Öhman-Mägi C. Monetite-based composite cranial implants demonstrate long-term clinical volumetric balance by concomitant bone formation and degradation. Acta Biomater 2021; 128:502-513. [PMID: 33857696 DOI: 10.1016/j.actbio.2021.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The use of calcium phosphates (CaPs) as synthetic bone substitutes should ideally result in a volumetric balance with concomitant bone formation and degradation. Clinical data on such properties is nevertheless lacking, especially for monetite-based CaPs. However, a monetite-based composite implant has recently shown promising cranial reconstructions, with both CaP degradation and bone formation. In this study, the volumetric change at the implant site was quantified longitudinally by clinical computed tomography (CT). The retrospective CT datasets had been acquired postoperatively (n = 10), in 1-year (n = 9) and 3-year (n = 5) follow-ups. In the 1-year follow-up, the total volumetric change at the implant site was -8 ± 8%. A volumetric increase (bone formation) was found in the implant-bone interface, and a volumetric decrease was observed in the central region (CaP degradation). In the subjects with 2- or 3-year follow-ups, the rate of volumetric decrease slowed down or plateaued. The reported degradation rate is lower than previous clinical studies on monetite, likely due to the presence of pyrophosphate in the monetite-based CaP-formulation. A 31-months retrieval specimen analysis demonstrated that parts of the CaP had been remodeled into bone. The CaP phase composition remained stable, with 6% transformation into hydroxyapatite. In conclusion, this study demonstrates successful bone-bonding between the CaP-material and the recipient bone, as well as a long-term volumetric balance in cranial defects repaired with the monetite-based composite implant, which motivates further clinical use. The developed methods could be used in future studies for correlating spatiotemporal information regarding bone regeneration and CaP degradation to e.g. patient demographics. STATEMENT OF SIGNIFICANCE: In bone defect reconstructions, the use of calcium phosphate (CaP) bioceramics ideally results in a volumetric balance between bone formation and CaP degradation. Clinical data on the volumetric balance is nevertheless lacking, especially for monetite-based CaPs. Here, this concept is investigated for a composite cranial implant. The implant volumes were quantified from clinical CT-data: postoperatively, one year and three years postoperatively. In total, -8 ± 8% (n = 9) volumetric change was observed after one year. But the change plateaued, with only 2% additional decrease at the 3-year follow-up (n = 5), indicating a lower CaP degradation rate. Osseointegration was seen at the bone-implant interface, with a 9 ± 7% volumetric change after one year. This study presented the first quantitative spatiotemporal CT analysis of monetite-based CaPs.
Collapse
Affiliation(s)
- Susanne Lewin
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| | - Lars Kihlström Burenstam Linder
- Department of Neurosurgery, Clinical Neurosciences, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Birgersson
- Department of Neurosurgery, Clinical Neurosciences, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institutet, Huddinge, Sweden; OssDsign, Uppsala, Sweden
| | - Sara Gallinetti
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden; OssDsign, Uppsala, Sweden
| | - Jonas Åberg
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden; OssDsign, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Sirkiä SV, Nakamura M, Qudsia S, Siekkinen M, Smått JH, Peltonen J, Heino TJ, Hupa L, Vallittu PK. Structural and elemental characterization of glass and ceramic particles for bone surgery. Dent Mater 2021; 37:1350-1357. [PMID: 34175132 DOI: 10.1016/j.dental.2021.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinically used bioceramics have been characterized previously with different kinds of methods and comparison of results have proven to be difficult due to varieties of the material properties of interest. Therefore, in this study we compared clinically commonly used bioceramics of hydroxyapatite and carbonate apatite, two bioactive glasses 45S5 and S53P4, and alumina with respect of properties which according to the present knowledge are significant for bone biology. METHODS Physicochemical properties of the materials were characterized by various methods. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) was used to analyze the material vibrational features. X-ray Power Diffraction (XRD) was used to characterize the material crystal structure and scanning electron microscopy-energy-dispersive x-ray analysis (SEM-EDXA) was used to evaluate the morphology and size of the materials and to calculate their oxide content. The dissolution behavior of the materials, ion release and pH changes in Tris buffer in a continuous flow-through reaction for 24-hours were determined. The change of the surface of the bioactive glasses by interfacial reaction during the Tris immersion was examined and the thickness of the surface reaction layer of the materials was studied. RESULTS SEM examination showed that the particle morphology of BG 45S5, BG S53P4 and alumina particle's surface was smooth. The surface of HAP was porous, but also CAP showed some surface porosity. An increase in the pH of the immersion solution was observed especially for BG 45S5 and BG S53P4. HAP, CAP and alumina caused only a minor increase in pH. BGs 45S5 and S53P4 showed a rapid initial release of sodium and calcium ions, followed by the release of silicon species. Minor release of sodium ions was registered for HAP, CAP and alumina. Calcium ion release was low but constant over the experimental time while only a minor initial dissolution was measured for HAP. SIGNIFICANCE The in vitro study showed differences in the materials' properties, which are considered to be important for biological suitability and in clinical applications, such as materials tomography, ion release and pH changes.
Collapse
Affiliation(s)
- Saara V Sirkiä
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland.
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Syeda Qudsia
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Porthansgatan 3-5, 20500 Turku, Finland
| | - Minna Siekkinen
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland
| | - Jan-Henrik Smått
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Porthansgatan 3-5, 20500 Turku, Finland
| | - Jouko Peltonen
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Porthansgatan 3-5, 20500 Turku, Finland
| | - Terhi J Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; City of Turku, Welfare Division, Turku, Finland
| |
Collapse
|
20
|
Carbon-fiber reinforced PEEK instrumentation for spondylodiscitis: a single center experience on safety and efficacy. Sci Rep 2021; 11:2414. [PMID: 33510239 PMCID: PMC7843974 DOI: 10.1038/s41598-021-81960-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Radiolucent carbon-fiber-reinforced (CFR) polyethyl-ether-ether-ketone (PEEK) has been established in spinal instrumentation for oncological reasons. Laboratory data reported comparable bacterial adhesion as titanium. Thus, using of CFR-PEEK spinal instrumentation for spondylodiscitis bases on artifact-free imaging to evaluate therapeutic success. Studies comparing the rate of pedicle screw loosening and relapse of spondylodiscitis following titanium versus CFR-PEEK instrumentation do not exist so far. This study evaluates the rate of pedicle screw loosening and recurrence of spondylodiscitis after CFR-PEEK instrumentation for spondylodiscitis compared to titanium. We conducted a prospective single center study between June 2018 and March 2019 on consecutive 23 patients with thoracolumbar spondylodiscitis. Imaging data was evaluated for screw loosening at a minimum of three months after surgery. A matched-pair analysis was performed using spondylodiscitis cases between 2014 and 2016 using titanium instrumentation for equal localization, surgery, and microorganism class. Among 17 cases with follow-up imaging, six cases (35%) showed screw loosening while only 14% (two patients) with titanium instrumentation were loosened (p = 0.004). In both groups the most frequent bacterium was Staphylococcus aureus, followed by Staphylococcus epidermidis. From the S. aureus cases, one infection in both groups was caused by methicillin resistant species (MRSA). No difference was found in the rate of 360° fusion in either group due to matching criteria. As opposed to other indications CFR-PEEK screws show more loosening than titanium in this series with two potentially underlying reasons: a probably stronger bacterial adhesion on CFR-PEEK in vivo as shown by a statistical trend in vitro and instrumentation of spondylytic vertebrae. Until these factors are validated, we advise caution when implanting CFR-PEEK screws in infectious cases.
Collapse
|
21
|
3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater 2021; 116:104335. [PMID: 33494021 DOI: 10.1016/j.jmbbm.2021.104335] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Functional reconstruction of large-size mandibular continuity defect is still a major challenge in the oral and maxillofacial surgery due to the unsatisfactory repair effects and various complications. This study aimed to develop a new functional repair method for mandibular defects combined with 3D-printed polyetheretherketone (PEEK) implant and the free vascularized fibula graft, and evaluated the service performance of the implant under whole masticatory motion. The design criteria and workflows of the mandibular reconstruction were established based on the requirements of safety, functionality, and shape consistency. Both the biomechanical behavior and the mechanobiological property of mandibular reconstruction under various masticatory motion were investigated by the finite element analysis. The maximum von Mises stress of each component was lower than the yield strength of the corresponding material and the safety factor was more than 2.3 times, which indicated the security of the repair method can be guaranteed. Moreover, the actual deformation of the reconstruction model was lower than that of the normal mandible under most clenching tasks, which assured the primary stability. More than 80% of the volume elements in the bone graft can obtain effective mechanical stimulation, which benefited to reduce the risks of bone resorption. Finally, the novel repair method was applied in clinic and good clinical performances have been achieved. Compared with the conventional fibular bone graft for surgical mandibular reconstruction, this study provides excellent safety and stability to accomplish the functional reconstruction and aesthetic restoration of the mandible defect.
Collapse
|
22
|
Balakumaran V, Alagirusamy R, Kalyanasundaram D. Epoxy based sandwich composite using three-dimensional integrally woven fabric as core strengthened with additional carbon face-sheets. J Mech Behav Biomed Mater 2021; 116:104317. [PMID: 33465695 DOI: 10.1016/j.jmbbm.2021.104317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Sandwich composites are three-dimensional (3D) composite structures that offer higher stiffness with overall low density. However, they suffer from low strength; thus, not suited for load bearing applications. In this work, an attempt is made to develop a high strength lightweight sandwich composite suited for load-bearing applications. A sandwich composite based on 3D integrally woven fabric with thickness 3 mm as the core and strengthened with additional 2x2 twill woven carbon fabric face-sheets is reported. The samples were manufactured by wet hand lay co-lamination process using Araldite® LY 1564 epoxy as the matrix polymer and with fiber fraction of 50% by weight. The number of additional carbon face-sheets over the core was varied from two to eight in steps of two. The composite samples were experimented under three-point bending and edgewise compression tests to determine the flexural and compressive strengths in both warp and weft directions. The weft direction samples yielded higher flexural and compressive strengths due to the continuous arrangement of the core pile yarn. The samples with six carbon face-sheets tested along the weft direction offered the highest specific strengths of ~409 kN m/kg and 259 kN m/kg in bending and compression tests. Similarly, the flexural strength was ~340 MPa, and compressive strength was ~217 MPa. A detailed fractography study revealed no core crushing or compression failure of the core during bending tests.
Collapse
Affiliation(s)
- V Balakumaran
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| | - Ramasamy Alagirusamy
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
23
|
Zhang HY, Jiang HB, Kim JE, Zhang S, Kim KM, Kwon JS. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration. J Mech Behav Biomed Mater 2020; 112:104061. [PMID: 32889335 DOI: 10.1016/j.jmbbm.2020.104061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
Considering the inferior mechanical properties of the current bioresorbable polymers, a novel bioresorbable magnesium-reinforced polylactide (PLA) membrane was designed for the application in critical defect sites in guided bone/tissue regeneration. The PLA-FAZ91 membrane was fabricated by combining two PLA membranes with a fluoride-coated AZ91 (9 wt% Al, 1 wt% Zn) (FAZ91) magnesium alloy core by hot pressing. A combined double-layered PLA membrane was used as the control group. A three-point bending test was performed to compare their maximum load and stiffness. Samples were immersed in the HBSS for 20 weeks, and their weight loss percentages were recorded, and a three-point bending test was performed after immersion. An ion release test was performed by immersing samples in the HBSS for 4 weeks and determining the pH and ion concentrations of the HBSS. Cell viability was tested by culturing pre-osteoblast cells with sample extracts in the culture medium obtained from degraded samples. As a result, PLA-FAZ91 showed a significantly higher maximum load and stiffness than those of the non-reinforced PLA membrane. The weight loss of PLA-FAZ91 was much faster, as FAZ91 showed major degradation and was completely degraded after 16-20 weeks of immersion. The degradation of the PLA wrap was accelerated by FAZ91. The mechanical superiority of PLA-FAZ91 over PLA endured for at least 3 weeks during immersion. The pH, magnesium- and fluoride-ion concentration in the PLA-FAZ91 group increased at an appropriate rate. The cell viability was not adversely affected by the addition of FAZ91 to PLA. Therefore, the bioresorbable magnesium-reinforced PLA membrane has the potential to be used as a good alternative to pure PLA membrane in guided bone/tissue regeneration.
Collapse
Affiliation(s)
- Hao Yang Zhang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Heng Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Ji-Eun Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - ShuXin Zhang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, Seou, 03722, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, Seou, 03722, Republic of Korea.
| |
Collapse
|
24
|
Vallittu PK, Posti JP, Piitulainen JM, Serlo W, Määttä JA, Heino TJ, Pagliari S, Syrjänen SM, Forte G. Biomaterial and implant induced ossification: in vitro and in vivo findings. J Tissue Eng Regen Med 2020; 14:1157-1168. [PMID: 32415757 PMCID: PMC7496445 DOI: 10.1002/term.3056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Material-induced ossification is suggested as a suitable approach to heal large bone defects. Fiber-reinforced composite-bioactive glasses (FRC-BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC-BG implant in vivo from the perspective of material-induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly-formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC-BG, we cultured human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2 O3 control. AD-MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro-osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC-BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC-BG implant demonstrated material-induced ossification both in vitro and in vivo.
Collapse
Affiliation(s)
- Pekka K. Vallittu
- Department of Biomaterials ScienceInstitute of Dentistry, University of Turku and City of Turku, Welfare DivisionTurkuFinland
| | - Jussi P. Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury CentreTurku University Hospital and University of TurkuTurkuFinland
| | - Jaakko M. Piitulainen
- Division of Surgery and Cancer Diseases, Department of Otorhinolaryngology ‐ Head and Neck Surgery, Turku University HospitalTurku Finland and University of TurkuTurkuFinland
| | - Willy Serlo
- PEDEGO Research Unit, University of Oulu, Oulu, Finland and Department of Children and AdolescentsOulu University HospitalOuluFinland
| | | | | | - Stefania Pagliari
- International Clinical Research Center of St. Anne's University Hospital BrnoBrnoCzech Republic
| | - Stina M. Syrjänen
- Department of Oral Pathology and Radiology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Giancarlo Forte
- International Clinical Research Center of St. Anne's University Hospital BrnoBrnoCzech Republic
| |
Collapse
|