1
|
Habing KM, Alcazar CA, Duke VR, Tan YH, Willett NJ, Nakayama KH. Age-associated functional healing of musculoskeletal trauma through regenerative engineering and rehabilitation. Biomater Sci 2024; 12:5186-5202. [PMID: 39172120 DOI: 10.1039/d4bm00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Traumatic musculoskeletal injuries that lead to volumetric muscle loss (VML) are challenged by irreparable soft tissue damage, impaired regenerative ability, and reduced muscle function. Regenerative rehabilitation strategies involving the pairing of engineered therapeutics with exercise have guided considerable advances in the functional repair of skeletal muscle following VML. However, few studies evaluate the efficacy of regenerative rehabilitation across the lifespan. In the current study, young and aged mice are treated with an engineered muscle, consisting of nanofibrillar-aligned collagen laden with myogenic cells, in combination with voluntary running activity following a VML injury. Overall, young mice perform at higher running volumes and intensities compared to aged mice but exhibit similar volumes relative to age-matched baselines. Additionally, young mice are highly responsive to the dual treatment showing enhanced force production (p < 0.001), muscle mass (p < 0.05), and vascular density (p < 0.01) compared to age-matched controls. Aged mice display upregulation of circulating inflammatory cytokines and show no significant regenerative response to treatment, suggesting a diminished efficacy of regenerative rehabilitation in aged populations. These findings highlight the restorative potential of regenerative engineering and rehabilitation for the treatment of traumatic musculoskeletal injuries in young populations and the complimentary need for age-specific interventions and studies to serve broader patient demographics.
Collapse
Affiliation(s)
- Krista M Habing
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Cynthia A Alcazar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Victoria R Duke
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Yong How Tan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Nick J Willett
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Orthopaedics, Oregon Health & Science University, Portland, OR, USA
- The Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Karina H Nakayama
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Department of Orthopaedics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Wu J, Wang Q, Tang O, Liao J, Zhao Q, Liang J, Feng H, Wang L, Wang H, Shen Q. On-site monitoring of nandrolone in cattle farming samples by portable atmospheric pressure chemical ionization mass spectrometry with ambient sampling. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124107. [PMID: 38581929 DOI: 10.1016/j.jchromb.2024.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 μL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.
Collapse
Affiliation(s)
- Jiahui Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing 312000, China
| | - Jie Liao
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China
| | - Huina Feng
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Linhua Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China.
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, China.
| | - Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
3
|
Zheng Y, Feng J, Yu Y, Ling M, Wang X. Advances in sarcopenia: mechanisms, therapeutic targets, and intervention strategies. Arch Pharm Res 2024; 47:301-324. [PMID: 38592582 DOI: 10.1007/s12272-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Gebauer J, Hodkovicova N, Tosnerova K, Skoupa K, Batik A, Bartejsova I, Charvatova M, Leva L, Jarosova R, Sladek Z, Faldyna M, Stastny K. Anabolic steroids induced changes at the level of protein expression: Effects of prolonged administration of testosterone and nandrolone to pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104422. [PMID: 38521435 DOI: 10.1016/j.etap.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Synthetic derivatives of steroid hormones, specifically anabolic-androgenic steroids (AAS), have gained prominence due to their observed benefits in enhancing meat quality. The study replicated the administration of banned AAS and investigated their impacts on pigs to contribute to the understanding of animal biochemistry and to explore the feasibility of detecting AAS administration by employing a non-targeted analysis. The effects were corroborated by evaluating changes in the expression of selected proteins, as well as examining haematological and biochemical profiles and histological alterations. Exposure to AAS influenced the expression of proteins related to drug-metabolizing enzymes, muscle and lipid metabolism, kidney function, reproductive processes, immune system functions, and carcinogenic changes. The effects of AAS appear intricate and contingent on factors such as the specific drug used, dosage, and duration of administration. The results underscore that protein expression analysis holds promise as a valuable tool for detecting illicit AAS use in the fattening process.
Collapse
Affiliation(s)
- Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kristyna Skoupa
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Iva Bartejsova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Charvatova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Rea Jarosova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Zbysek Sladek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
5
|
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q, Peng L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr 2023; 10:1214684. [PMID: 37614743 PMCID: PMC10442553 DOI: 10.3389/fnut.2023.1214684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases in the elderly population and is characterized by persistent respiratory symptoms and airflow obstruction. During COPD progression, a variety of pulmonary and extrapulmonary complications develop, with sarcopenia being one of the most common extrapulmonary complications. Factors that contribute to the pathogenesis of coexisting COPD and sarcopenia include systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic imbalance, and myocyte mitochondrial dysfunction. These factors, individually or in concert, affect muscle function, resulting in decreased muscle mass and strength. The occurrence of sarcopenia severely affects the quality of life of patients with COPD, resulting in increased readmission rates, longer hospital admission, and higher mortality. In recent years, studies have found that oral supplementation with protein, micronutrients, fat, or a combination of nutritional supplements can improve the muscle strength and physical performance of these patients; some studies have also elucidated the possible underlying mechanisms. This review aimed to elucidate the role of nutrition among patients with coexisting COPD and sarcopenia.
Collapse
Affiliation(s)
- Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Yuting Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Pingping Zhong
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fufeng Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Anabolic Steroids in Fattening Food-Producing Animals—A Review. Animals (Basel) 2022; 12:ani12162115. [PMID: 36009705 PMCID: PMC9405261 DOI: 10.3390/ani12162115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Anabolic steroids significantly affect animal tissues and cause morphological and histological changes, which are often irreversible. This issue is currently a very hot topic, as the answers to the questions concerning the health of endangered animals and humans vary greatly from country to country. There is a need to further investigate whether the use of anabolic steroids in animal fattening threatens consumer health and to develop new tools for the detection of anabolic steroids in meat. One possibility for detection could be to observe histological changes in the tissues, which form a typical pattern of anabolic abuse. This review gathered information on the anabolic steroids most commonly used in animal fattening, the legislation governing this issue, and the main effects of anabolics on animal tissues. Abstract Anabolic steroids are chemically synthetic derivatives of the male sex hormone testosterone. They are used in medicine for their ability to support muscle growth and healing and by athletes for esthetic purposes and to increase sports performance, but another major use is in fattening animals to increase meat production. The more people there are on Earth, the greater the need for meat production and anabolic steroids accelerate the growth of animals and, most importantly, increase the amount of muscle mass. Anabolic steroids also have proven side effects that affect all organs and tissues, such as liver and kidney parenchymal damage, heart muscle degeneration, organ growth, coagulation disorders, and increased risk of muscle and tendon rupture. Anabolic steroids also have a number of harmful effects on the developing brain, such as brain atrophy and changes in gene expression with consequent changes in the neural circuits involved in cognitive functions. Behavioral changes such as aggression, irritability, anxiety and depression are related to changes in the brain. In terms of long-term toxicity, the greatest impact is on the reproductive system, i.e., testicular shrinkage and infertility. Therefore, their abuse can be considered a public health problem. In many countries around the world, such as the United States, Canada, China, Argentina, Australia, and other large meat producers, the use of steroids is permitted but in all countries of the European Union there is a strict ban on the use of anabolic steroids in fattening animals. Meat from a lot of countries must be carefully inspected and monitored for steroids before export to Europe. Gas or liquid chromatography methods in combination with mass spectrometry detectors and immunochemical methods are most often used for the analysis of these substances. These methods have been considered the most modern for decades, but can be completely ineffective if they face new synthetic steroid derivatives and want to meet meat safety requirements. The problem of last years is the application of “cocktails” of anabolic substances with very low concentrations, which are difficult to detect and are difficult to quantify using conventional detection methods. This is the reason why scientists are trying to find new methods of detection, mainly based on changes in the structure of tissues and cells and their metabolism. This review gathered this knowledge into a coherent form and its findings could help in finding such a combination of changes in tissues that would form a typical picture for evidence of anabolic misuse.
Collapse
|