1
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024:10.1007/s00109-024-02493-x. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
2
|
Boretti G, Baldursson HE, Buonarrivo L, Simonsson S, Brynjólfsson S, Gargiulo P, Sigurjónsson ÓE. Mechanical and Biological Characterization of Ionic and Photo-Crosslinking Effects on Gelatin-Based Hydrogel for Cartilage Tissue Engineering Applications. Polymers (Basel) 2024; 16:2741. [PMID: 39408454 PMCID: PMC11479120 DOI: 10.3390/polym16192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Articular cartilage degeneration poses a significant public health challenge; techniques such as 3D bioprinting are being explored for its regeneration in vitro. Gelatin-based hydrogels represent one of the most promising biopolymers used in cartilage tissue engineering, especially for its collagen composition and tunable mechanical properties. However, there are no standard protocols that define process parameters such as the crosslinking method to apply. To this aim, a reproducible study was conducted for exploring the influence of different crosslinking methods on 3D bioprinted gelatin structures. This study assessed mechanical properties and cell viability in relation to various crosslinking techniques, revealing promising results particularly for dual (photo + ionic) crosslinking methods, which achieved high cell viability and tunable stiffness. These findings offer new insights into the effects of crosslinking methods on 3D bioprinted gelatin for cartilage applications. For example, ionic and photo-crosslinking methods provide softer materials, with photo-crosslinking supporting cell stretching and diffusion, while ionic crosslinking preserves a spherical stem cell morphology. On the other hand, dual crosslinking provides a stiffer, optimized solution for creating stable cartilage-like constructs. The results of this study offer a new perspective on the standardization of gelatin for cartilage bioprinting, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Hafsteinn Esjar Baldursson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Luca Buonarrivo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 102 Reykjavik, Iceland;
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
3
|
Lenneman CM, Rose EM, Strawska BA, Tyszkiewicz NA, Dean-Christie K, Katz E, Roche JM, de Morree A, Roche R, Tulapurkar ME, Roche JA. Extruded alginate tubes with myogenic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591971. [PMID: 38746385 PMCID: PMC11092588 DOI: 10.1101/2024.04.30.591971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND There are currently no proven methods to reverse muscle loss in humans, which is caused by trauma (e.g., volumetric muscle loss, VML), genetic neuromuscular diseases (e.g., muscular dystrophies, MDs), and accelerated senescence (e.g., sarcopenia). Since muscle tissue is capable of regeneration through muscle satellite cells (MuSCs), the implantation of autologous (or other) donor MuSCs and MuSC-derived myoblasts into host muscles can promote donor-cell-derived myogenesis. Direct injection or implantation of MuSCs or MuSC-derived myoblasts into host muscles only promotes minimal donor-cell-derived myogenesis, whereas implantation of MuSCs/myoblasts along with associated muscle tissue (muscle fibers, extracellular matrix, neurovascular pathways, etc.) gives better results. METHODS We aim to leverage the benefits of constraining donor myogenic cells within a template that resembles muscle tissue. In this paper, we present a workflow for basic and translational studies aimed at promoting donor-cell-derived myogenesis to increase functional muscle mass in mice. Our workflow involves preparing a slurry of 10% sodium alginate mixed with myogenic cells in cell culture media, extruding the cell-containing slurry into 10% calcium lactate to form tubes, and implanting the cellularized alginate tubes into host muscle. RESULTS Our data suggest that, the extruded alginate tubes can tolerate a peak stress of 1892 ± 527 mN, that the elastic range is at ~75-125% strain beyond initial length, and that the Young's modulus (stiffness) is 14.17 ± 1.68 %/mm2. Importantly, these mechanical properties render the alginate tubes suitable for a published technique known as minimally-invasive muscle embedding (MIME) that was developed by us to implant myogenic material into host muscle. MIME involves threading donor myogenic tissue into a needle track created within a host muscle. Cellularized alginate tubes implanted into the tibialis anterior muscle of previously euthanized mice had numerous hematoxylin-stained structures similar to nuclear staining, supporting the idea that our alginate tubes can support cell seeding. Alginate tubes that were seeded with MuSCs, incubated in MuSC/myoblast growth (i.e., proliferation) media for two days, incubated in myotube differentiation media for six days, and then minced and reseeded in new dishes, were able to promote in vitro myoblast outgrowth over several days. DISCUSSION This pilot study is limited in its translational scope because it was performed in vitro and with previously euthanized mice. Additional studies are needed to confirm that cellularized alginate tubes can promote the de novo development of donor-cell-derived muscle fibers, which can contribute to contractile force production. CONCLUSION Alginate tubes with MuSC/myoblasts can be generated by a simple extrusion method. The alginate tubes have sufficient mechanical strength to tolerate insertion into a host muscle, in a minimally-invasive manner, through a needle track. The cellularized alginate tubes demonstrate myogenic potential since they are capable of being maintained in culture conditions for several days, after which they can still facilitate myoblast outgrowth in a dish.
Collapse
Affiliation(s)
- Cameron M. Lenneman
- Physical Therapy Program. Department of Health Care Sciences. Eugene Applebaum College of Pharmacy and Health Sciences. Wayne State University. Detroit, MI, USA
| | - Emily M. Rose
- Physical Therapy Program. Department of Health Care Sciences. Eugene Applebaum College of Pharmacy and Health Sciences. Wayne State University. Detroit, MI, USA
| | - Brooke A. Strawska
- Physical Therapy Program. Department of Health Care Sciences. Eugene Applebaum College of Pharmacy and Health Sciences. Wayne State University. Detroit, MI, USA
| | - Natalie A. Tyszkiewicz
- Physical Therapy Program. Department of Health Care Sciences. Eugene Applebaum College of Pharmacy and Health Sciences. Wayne State University. Detroit, MI, USA
| | - Karen Dean-Christie
- Department of Laboratory Animal Resources (DLAR). Wayne State University. Detroit, MI, USA
| | - Erin Katz
- Department of Laboratory Animal Resources (DLAR). Wayne State University. Detroit, MI, USA
| | - Joseph M. Roche
- The Le Cordon Bleu Sydney Culinary Institute. Sydney, NSW, Australia
| | | | - Renuka Roche
- Occupational Therapy Program. School of Health Sciences, Eastern Michigan University, Ypsilanti, MI, USA
| | - Mohan E. Tulapurkar
- Division of pulmonary and Critical care. University of Maryland School of Medicine. Baltimore, MD, USA
| | - Joseph A. Roche
- Physical Therapy Program. Department of Health Care Sciences. Eugene Applebaum College of Pharmacy and Health Sciences. Wayne State University. Detroit, MI, USA
| |
Collapse
|
4
|
Taheripak G, Sabeti N, Najar N, Razavi Z, Saharkhiz S, Alipourfard I. SIRT1 activation attenuates palmitate induced apoptosis in C 2C 12 muscle cells. Mol Biol Rep 2024; 51:354. [PMID: 38400872 DOI: 10.1007/s11033-024-09250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Type 2 diabetes is characterized by insulin resistance, which manifests mainly in skeletal muscles. SIRT1 has been found to play a role in the insulin signaling pathway. However, the molecular underpinnings of SIRT1's function in palmitate fatty acid-induced apoptosis still need to be better understood. METHODS In this research, skeletal muscle cells are treated with palmitate to be insulin resistant. It is approached that SIRT1 is downregulated in C2C12 muscle cells during palmitate-induced apoptosis and that activating SIRT1 mitigates this effect. RESULTS Based on these findings, palmitate-induced apoptosis suppressed mitochondrial biogenesis by lowering PGC-1 expression, while SIRT1 overexpression boosted. The SIRT1 inhibitor sirtinol, on the other hand, decreased mitochondrial biogenesis under the same conditions. This research also shows that ROS levels rise in the conditions necessary for apoptosis induction by palmitate, and ROS inhibitors can mitigate this effect. This work demonstrated that lowering ROS levels by boosting SIRT1 expression inhibited apoptotic induction in skeletal muscle cells. CONCLUSION This study's findings suggested that SIRT1 can improve insulin resistance in type 2 diabetes by slowing the rate of lipo-apoptosis and boosting mitochondrial biogenesis, among other benefits.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niusha Sabeti
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naba Najar
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Razavi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, Warsaw, 01-224, Poland.
| |
Collapse
|
5
|
Thangadurai M, Srinivasan SS, Sekar MP, Sethuraman S, Sundaramurthi D. Emerging perspectives on 3D printed bioreactors for clinical translation of engineered and bioprinted tissue constructs. J Mater Chem B 2024; 12:350-381. [PMID: 38084021 DOI: 10.1039/d3tb01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
3D printed/bioprinted tissue constructs are utilized for the regeneration of damaged tissues and as in vitro models. Most of the fabricated 3D constructs fail to undergo functional maturation in conventional in vitro settings. There is a challenge to provide a suitable niche for the fabricated tissue constructs to undergo functional maturation. Bioreactors have emerged as a promising tool to enhance tissue maturation of the engineered constructs by providing physical/biological cues along with a controlled nutrient supply under dynamic in vitro conditions. Bioreactors provide an ambient microenvironment most appropriate for the development of functionally matured tissue constructs by promoting cell proliferation, differentiation, and maturation for transplantation and drug screening applications. Due to the huge cost and limited availability of commercial bioreactors, there is a need to develop strategies to make customized bioreactors. Additive manufacturing (AM) may be a viable tool to fabricate custom designed bioreactors with better efficiency and at low cost. In this review, we have extensively discussed the importance of bioreactors in functionalizing tissue engineered/3D bioprinted scaffolds for bone, cartilage, skeletal muscle, nerve, and vascular tissue. In addition, the importance and fabrication of customized 3D printed bioreactors for the maturation of tissue engineered constructs are discussed in detail. Finally, the current challenges and future perspectives in translating commercial and custom 3D printed bioreactors for clinical applications are outlined.
Collapse
Affiliation(s)
- Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Sai Sadhananth Srinivasan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
6
|
Lackner F, Šurina P, Fink J, Kotzbeck P, Kolb D, Stana J, Grab M, Hagl C, Tsilimparis N, Mohan T, Stana Kleinschek K, Kargl R. 4-Axis 3D-Printed Tubular Biomaterials Imitating the Anisotropic Nanofiber Orientation of Porcine Aortae. Adv Healthc Mater 2024; 13:e2302348. [PMID: 37807640 PMCID: PMC11469240 DOI: 10.1002/adhm.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Many of the peculiar properties of the vasculature are related to the arrangement of anisotropic proteinaceous fibers in vessel walls. Understanding and imitating these arrangements can potentially lead to new therapies for cardiovascular diseases. These can be pre-surgical planning, for which patient-specific ex vivo anatomical models for endograft testing are of interest. Alternatively, therapies can be based on tissue engineering, for which degradable in vitro cell growth substrates are used to culture replacement parts. In both cases, materials are desirable that imitate the biophysical properties of vessels, including their tubular shapes and compliance. This work contributes to these demands by offering methods for the manufacturing of anisotropic 3D-printed nanofibrous tubular structures that have similar biophysical properties as porcine aortae, that are biocompatible, and that allow for controlled nutrient diffusion. Tubes of various sizes with axial, radial, or alternating nanofiber orientation along the blood flow direction are manufactured by a customized method. Blood pressure-resistant, compliant, stable, and cell culture-compatible structures are obtained, that can be degraded in vitro on demand. It is suggested that these healthcare materials can contribute to the next generation of cardiovascular therapies of ex vivo pre-surgical planning or in vitro cell culture.
Collapse
Affiliation(s)
- Florian Lackner
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Paola Šurina
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Julia Fink
- COREMED ‐ Centre of Regenerative and Precision MedicineJOANNEUM RESEARCH Forschungsgesellschaft mbHNeue Stiftingtalstraße 28010GrazAustria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of SurgeryMedical University of GrazAuenbruggerplatz 29/48036GrazAustria
| | - Petra Kotzbeck
- COREMED ‐ Centre of Regenerative and Precision MedicineJOANNEUM RESEARCH Forschungsgesellschaft mbHNeue Stiftingtalstraße 28010GrazAustria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of SurgeryMedical University of GrazAuenbruggerplatz 29/48036GrazAustria
| | - Dagmar Kolb
- Core Unit Ultrastructure AnalysisMedical University GrazStiftingtalstraße 6/II8010GrazAustria
- Gottfried Schatz Research Center for Cell Signaling Metabolism and AgingMedical University GrazStiftingtalstraße 68010GrazAustria
| | - Jan Stana
- Department of Vascular SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Maximilian Grab
- Department of Cardiac SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Christian Hagl
- Department of Cardiac SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Nikolaos Tsilimparis
- Department of Vascular SurgeryLudwig Maximilian University MunichMarchioninistraße 1581377MunichGermany
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
- Laboratory for Characterization and Processing of PolymersUniversity of MariborSmetanova ulica 16Maribor2000Slovenia
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased System (IBioSys)Graz University of TechnologyStremayrgasse 98010GrazAustria
- Laboratory for Characterization and Processing of PolymersUniversity of MariborSmetanova ulica 16Maribor2000Slovenia
| |
Collapse
|
7
|
Bülow A, Schäfer B, Beier JP. Three-Dimensional Bioprinting in Soft Tissue Engineering for Plastic and Reconstructive Surgery. Bioengineering (Basel) 2023; 10:1232. [PMID: 37892962 PMCID: PMC10604458 DOI: 10.3390/bioengineering10101232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle tissue engineering (TE) and adipose tissue engineering have undergone significant progress in recent years. This review focuses on the key findings in these areas, particularly highlighting the integration of 3D bioprinting techniques to overcome challenges and enhance tissue regeneration. In skeletal muscle TE, 3D bioprinting enables the precise replication of muscle architecture. This addresses the need for the parallel alignment of cells and proper innervation. Satellite cells (SCs) and mesenchymal stem cells (MSCs) have been utilized, along with co-cultivation strategies for vascularization and innervation. Therefore, various printing methods and materials, including decellularized extracellular matrix (dECM), have been explored. Similarly, in adipose tissue engineering, 3D bioprinting has been employed to overcome the challenge of vascularization; addressing this challenge is vital for graft survival. Decellularized adipose tissue and biomimetic scaffolds have been used as biological inks, along with adipose-derived stem cells (ADSCs), to enhance graft survival. The integration of dECM and alginate bioinks has demonstrated improved adipocyte maturation and differentiation. These findings highlight the potential of 3D bioprinting techniques in skeletal muscle and adipose tissue engineering. By integrating specific cell types, biomaterials, and printing methods, significant progress has been made in tissue regeneration. However, challenges such as fabricating larger constructs, translating findings to human models, and obtaining regulatory approvals for cellular therapies remain to be addressed. Nonetheless, these advancements underscore the transformative impact of 3D bioprinting in tissue engineering research and its potential for future clinical applications.
Collapse
Affiliation(s)
- Astrid Bülow
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany; (B.S.); (J.P.B.)
| | | | | |
Collapse
|
8
|
Tottoli EM, Benedetti L, Riva F, Chiesa E, Pisani S, Bruni G, Genta I, Conti B, Ceccarelli G, Dorati R. Electrospun Fibers Loaded with Pirfenidone: An Innovative Approach for Scar Modulation in Complex Wounds. Polymers (Basel) 2023; 15:4045. [PMID: 37896289 PMCID: PMC10610295 DOI: 10.3390/polym15204045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.
Collapse
Affiliation(s)
- Erika Maria Tottoli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental Medicine and Forensic, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Physical-Chemistry Section, Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| |
Collapse
|
9
|
Loi G, Scocozza F, Aliberti F, Rinvenuto L, Cidonio G, Marchesi N, Benedetti L, Ceccarelli G, Conti M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023; 9:595. [PMID: 37504474 PMCID: PMC10378771 DOI: 10.3390/gels9070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Flaminia Aliberti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, 27100 Pavia, Italy
| | - Lorenza Rinvenuto
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Nicola Marchesi
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
10
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
11
|
Lameirinhas NS, Teixeira MC, Carvalho JPF, Valente BFA, Pinto RJB, Oliveira H, Luís JL, Pires L, Oliveira JM, Vilela C, Freire CSR. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. Int J Biol Macromol 2023; 229:849-860. [PMID: 36572084 DOI: 10.1016/j.ijbiomac.2022.12.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.
Collapse
Affiliation(s)
- Nicole S Lameirinhas
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria C Teixeira
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P F Carvalho
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno F A Valente
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge L Luís
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - Liliana Pires
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - José M Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - Carla Vilela
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Sandhu A, Bhatia T. Hydrogels: From Design to Applications in Forensic Investigations. ChemistrySelect 2023. [DOI: 10.1002/slct.202204228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Anuradha Sandhu
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| | - Tejasvi Bhatia
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| |
Collapse
|
13
|
Tu CC, Cheng NC, Yu J, Pan YX, Tai WC, Chen YC, Chang PC. Adipose-derived stem cell spheroid-laden microbial transglutaminase cross-linked gelatin hydrogel for treating diabetic periodontal wounds and craniofacial defects. Stem Cell Res Ther 2023; 14:20. [PMID: 36737813 PMCID: PMC9898981 DOI: 10.1186/s13287-023-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetes mellitus deteriorates the destruction and impairs the healing of periodontal wounds and craniofacial defects. This study is to evaluate the potential of self-assembled adipose-derived stem cell spheroids (ADsp) in microbial transglutaminase cross-linked gelatin hydrogel (mTG) for treating diabetic periodontal wounds and craniofacial defects. METHODS Human adipose-derived stem cells (ADSCs) were isolated by lipoaspiration, pluripotent genes and trilineage differentiation were examined, and the maintenance of ADsp properties in mTG was verified. Oral mucosal wounds and calvarial osseous defects were created in diabetic rats. Gross observation, histologic evaluation, and immunohistochemistry for proliferating cells and keratinization were conducted in the mucosal wounds within 4-28 days. Micro-CT imaging, histologic evaluation, and immunohistochemistry for proliferating cells and osteogenic differentiation were conducted in the osseous defects at 7 and 28 days. RESULTS ADSCs expressed pluripotent genes and were capable of trilineage differentiation. ADsp retained morphology and stemness in mTG. In diabetic mucosal wounds, wound closure, epithelization, and keratinization were accelerated in those with ADsp and ADsp-mTG. In diabetic osseous defects, osteogenic differentiation markers were evidently expressed, cell proliferation was promoted from day 7, and bone formation was significantly promoted at day 28 in those with osteogenically pretreated ADsp-mTG. CONCLUSIONS ADsp-mTG accelerated diabetic oral mucosal wound healing, and osteogenically pretreated ADsp-mTG promoted diabetic osseous defect regeneration, proving that ADsp-mTG facilitated diabetic periodontal wound healing and craniofacial osseous defect regeneration.
Collapse
Affiliation(s)
- Che-Chang Tu
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Xuan Pan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Li T, Hou J, Wang L, Zeng G, Wang Z, Yu L, Yang Q, Yin J, Long M, Chen L, Chen S, Zhang H, Li Y, Wu Y, Huang W. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater 2023; 156:21-36. [PMID: 36002128 DOI: 10.1016/j.actbio.2022.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023]
Abstract
Viscoelastic hydrogels can enhance 3D cell migration and proliferation due to the faster stress relaxation promoting the arrangement of the cellular microenvironment. However, most synthetic photocurable hydrogels used as bioink materials for 3D bioprinting are typically elastic. Developing a photocurable hydrogel bioink with fast stress relaxation would be beneficial for 3D bioprinting engineered 3D skeletal muscles in vitro and repairing volumetric muscle loss (VML) in vivo; however, this remains an ongoing challenge. This study aims to develop an interpenetrating network (IPN) hydrogel with tunable stress relaxation using a combination of gelatin methacryloyl (GelMA) and fibrinogen. These IPN hydrogels with faster stress relaxation showed higher 3D cellular proliferation and better differentiation. A 3D anisotropic biomimetic scaffold was further developed via a printing gel-in-gel strategy, where the extrusion printing of cell-laden viscoelastic FG hydrogel within Carbopol supported gel. The 3D engineered skeletal muscle tissue was further developed via 3D aligned myotube formation and contraction. Furthermore, the cell-free 3D printed scaffold was implanted into a rat VML model, and both the short and long-term repair results demonstrated its ability to enhance functional skeletal muscle tissue regeneration. These data suggest that such viscoelastic hydrogel provided a suitable 3D microenvironment for enhancing 3D myogenic differentiation, and the 3D bioprinted anisotropic structure provided a 3D macroenvironment for myotube organization, which indicated the potential in skeletal muscle engineering and VML regeneration. STATEMENT OF SIGNIFICANCE: The development of a viscoelastic 3D aligned biomimetic skeletal muscle scaffold has been focused on skeletal muscle regeneration. However, a credible technique combining viscoelastic hydrogel and printing gel-in-gel strategy for fabricating skeletal muscle tissue was rarely reported. Therefore, in this study, we present an interpenetrating network (IPN) hydrogel with fast stress relaxation for 3D bioprinting engineered skeletal muscle via a printing gel-in-gel strategy. Such IPN hydrogels with tunable fast stress relaxation resulted in high 3D cellular proliferation and adequate differentiation in vitro. Besides, the 3D hydrogel-based scaffolds also enhance functional skeletal muscle regeneration in situ. We believe that this study provides several notable advances in tissue engineering that can be potentially used for skeletal muscle injury treatment in clinical.
Collapse
Affiliation(s)
- Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juedong Hou
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou Guangdong 510515, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou Guangdong 510515, China
| | - Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lizhi Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongwu Zhang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov 2023; 18:47-63. [PMID: 36535280 DOI: 10.1080/17460441.2023.2160438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the advances in skeletal muscle tissue engineering, new platforms have arisen with important applications in biology studies, disease modeling, and drug testing. Current developments highlight the quest for engineering skeletal muscle tissues with higher complexity . These new human skeletal muscle tissue models will be powerful tools for drug discovery and development and disease modeling. AREAS COVERED The authors review the latest advances in in vitro models of engineered skeletal muscle tissues used for testing drugs with a focus on the use of four main cell culture techniques: Cell cultures in well plates, in microfluidics, in organoids, and in bioprinted constructs. Additional information is provided on the satellite cell niche. EXPERT OPINION In recent years, more sophisticated in vitro models of skeletal muscle tissues have been fabricated. Important developments have been made in stem cell research and in the engineering of human skeletal muscle tissue. Some platforms have already started to be used for drug testing, notably those based on the parameters of hypertrophy/atrophy and the contractibility of myotubes. More developments are expected through the use of multicellular types and multi-materials as matrices . The validation and use of these models in drug testing should now increase.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,School of Basic Medical Science, Chengdu University, Chengdu, Sichuan, China.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Thangadurai M, Ajith A, Budharaju H, Sethuraman S, Sundaramurthi D. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue. BIOMATERIALS ADVANCES 2022; 142:213135. [PMID: 36215745 DOI: 10.1016/j.bioadv.2022.213135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles are essential for body movement, and the loss of motor function due to volumetric muscle loss (VML) limits the mobility of patients. Current therapeutic approaches are insufficient to offer complete functional recovery of muscle damages. Tissue engineering provides viable ways to fabricate scaffolds to regenerate damaged tissues. Hence, tissue engineering options are explored to address existing challenges in the treatment options for muscle regeneration. Electrospinning is a widely employed fabrication technique to make muscle mimetic nanofibrous scaffolds for tissue regeneration. 3D bioprinting has also been utilized to fabricate muscle-like tissues in recent times. This review discusses the anatomy of skeletal muscle, defects, the healing process, and various treatment options for VML. Further, the advanced strategies in electrospinning of natural and synthetic polymers are discussed, along with the recent developments in the fabrication of hybrid scaffolds. Current approaches in 3D bioprinting of skeletal muscle tissues are outlined with special emphasis on the combination of electrospinning and 3D bioprinting towards the development of fully functional muscle constructs. Finally, the current challenges and future perspectives of these convergence techniques are discussed.
Collapse
Affiliation(s)
- Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Athulya Ajith
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
17
|
Paci C, Iberite F, Arrico L, Vannozzi L, Parlanti P, Gemmi M, Ricotti L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater Sci 2022; 10:5265-5283. [PMID: 35913209 DOI: 10.1039/d1bm01853a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures. After the characterization of nanoparticles and bioinks, viability tests were carried out to investigate three nanoparticle concentrations (100, 250, and 500 μg mL-1) within the printed structures. An excellent cytocompatibility was confirmed for nanoparticle concentrations up to 250 μg mL-1. TEM imaging demonstrated the internalization of BTNPs in intracellular vesicles. The combination of piezoelectric nanoparticles and ultrasound stimulation upregulated the expression of MYOD1, MYOG, and MYH2 and enhanced cell aggregation, which is a crucial step for myoblast fusion, and the presence of MYOG in the nuclei. These results suggest that the direct piezoelectric effect induced by ultrasound on the internalized piezoelectric nanoparticles boosts myogenesis in its early phases.
Collapse
Affiliation(s)
- Claudia Paci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
18
|
Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. NANOMATERIALS 2022; 12:nano12132190. [PMID: 35808026 PMCID: PMC9268501 DOI: 10.3390/nano12132190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
In this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.5% (w/v) CaCl2 to formulate A-LNF inks. These inks exhibit proper shear-thinning behavior and good recovery properties (~90%), with the pre-crosslinking step playing a crucial role. A-LNF fully crosslinked hydrogels (with 2% (w/v) CaCl2) that mimic 3D printing scaffolds were prepared, and it was observed that the addition of LNFs improved several properties of the hydrogels, such as the morphology, swelling and degradation profiles, and mechanical properties. All formulations are also noncytotoxic towards HaCaT cells. The printing parameters and 3D scaffold model were then optimized, with A-LNF inks showing improved printability. Selected A-LNF inks (A-LNF0 and A-LNF5) were loaded with HaCaT cells (cell density 2 × 106 cells mL−1), and the cell viability within the bioprinted scaffolds was evaluated for 1, 3 and 7 days, with scaffolds printed with the A-LNF5 bioink showing the highest values for 7 days (87.99 ± 1.28%). Hence, A-LNF bioinks exhibited improved rheological performance, printability and biological properties representing a good strategy to overcome the main limitations of alginate-based bioinks.
Collapse
|
19
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|