1
|
Bezbradica JS, Bryant CE. Inflammasomes as regulators of mechano-immunity. EMBO Rep 2024; 25:21-30. [PMID: 38177903 PMCID: PMC10897344 DOI: 10.1038/s44319-023-00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Mechano-immunity, the intersection between cellular or tissue mechanics and immune cell function, is emerging as an important factor in many inflammatory diseases. Mechano-sensing defines how cells detect mechanical changes in their environment. Mechano-response defines how cells adapt to such changes, e.g. form synapses, signal or migrate. Inflammasomes are intracellular immune sensors that detect changes in tissue and cell homoeostasis during infection or injury. We and others recently found that mechano-sensing of tissue topology (swollen tissue), topography (presence and distribution of foreign solid implant) or biomechanics (stiffness), alters inflammasome activity. Once activated, inflammasomes induce the secretion of inflammatory cytokines, but also change cellular mechanical properties, which influence how cells move, change their shape, and interact with other cells. When overactive, inflammasomes lead to chronic inflammation. This clearly places inflammasomes as important players in mechano-immunity. Here, we discuss a model whereby inflammasomes integrate pathogen- and tissue-injury signals, with changes in tissue mechanics, to shape the downstream inflammatory responses and allow cell and tissue mechano-adaptation. We will review the emerging evidence that supports this model.
Collapse
Affiliation(s)
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
2
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
4
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|