1
|
Miescher I, Schaffner N, Rieber J, Bürgisser GM, Ongini E, Yang Y, Milionis A, Vogel V, Snedeker JG, Calcagni M, Buschmann J. Hyaluronic acid/PEO electrospun tube reduces tendon adhesion to levels comparable to native tendons - An in vitro and in vivo study. Int J Biol Macromol 2024; 273:133193. [PMID: 38885859 DOI: 10.1016/j.ijbiomac.2024.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Esteban Ongini
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Yao Yang
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zürich, Switzerland.
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
2
|
Electrospun tube reduces adhesion in rabbit Achilles tendon 12 weeks post-surgery without PAR-2 overexpression. Sci Rep 2021; 11:23293. [PMID: 34857838 PMCID: PMC8639666 DOI: 10.1038/s41598-021-02780-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
One great challenge in surgical tendon repair is the minimization of peritendinous adhesions. An electrospun tube can serve as a physical barrier around a conventionally sutured tendon. Six New Zealand White rabbits had one Achilles tendon fully transsected and sutured by a 4-strand suture. Another six rabbits had the same treatment, but with the additional electrospun DegraPol tube set around the sutured tendon. The adhesion formation to the surrounding tissue was investigated 12 weeks post-operation. Moreover, inflammation-related protease-activated receptor-2 (PAR-2) protein expression was assessed. Finally, rabbit Achilles tenocyte cultures were exposed to platelet-derived growth factor-BB (PDGF-BB), which mimicks the tendon healing environment, where PAR-2 gene expression was assessed as well as immunofluorescent staining intensity for F-actin and α-tubulin, respectively. At 12 weeks post-operation, the partially degraded DegraPol tube exhibited significantly lower adhesion formation (- 20%). PAR-2 protein expression was similar for time points 3 and 6 weeks, but increased at 12 weeks post-operation. In vitro cell culture experiments showed a significantly higher PAR-2 gene expression on day 3 after exposure to PDGF-BB, but not on day 7. The cytoskeleton of the tenocytes changed upon PDGF-BB stimulation, with signs of reorganization, and significantly decreased F-actin intensity. An electrospun DegraPol tube significantly reduces adhesion up to twelve weeks post-operation. At this time point, the tube is partially degraded, and a slight PAR-2 increase was detected in the DP treated tendons, which might however arise from particles of degrading DegraPol that were stained dark brown. PAR-2 gene expression in rabbit tenocytes reveals sensitivity at around day 10 after injury.
Collapse
|
3
|
Rashid M, Dudhia J, Dakin SG, Snelling SJB, De Godoy R, Mouthuy PA, Smith RKW, Morrey M, Carr AJ. Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair. Sci Rep 2020; 10:4754. [PMID: 32179829 PMCID: PMC7076042 DOI: 10.1038/s41598-020-61725-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
We investigated endogenous tissue response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch intended for tendon repair. A sheep tendon injury model characterised by a natural history of consistent failure of healing was chosen to assess the biological potential of woven and aligned electrospun fibres to induce a reparative response. Patches were implanted into 8 female adult English Mule sheep. Significant infiltration of tendon fibroblasts was observed within the electrospun component of the patch but not within the woven component. The cellular infiltrate into the electrospun fibres was accompanied by an extensive network of new blood vessel formation. Tendon fibroblasts were the most abundant scaffold-populating cell type. CD45+, CD4+ and CD14+ cells were also present, with few foreign body giant cells. There were no local or systemic signs of excessive inflammation with normal hematology and serology for inflammatory markers three months after scaffold implantation. In conclusion, we demonstrate that an endogenous healing response can be safely induced in tendon by means of biophysical cues using a woven and electrospun patch.
Collapse
Affiliation(s)
- Mustafa Rashid
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Roberta De Godoy
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Pierre-Alexis Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Roger K W Smith
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Mark Morrey
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK. .,NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Meier Bürgisser G, Evrova O, Calcagni M, Scalera C, Giovanoli P, Buschmann J. Impact of PDGF-BB on cellular distribution and extracellular matrix in the healing rabbit Achilles tendon three weeks post-operation. FEBS Open Bio 2020; 10:327-337. [PMID: 31571428 PMCID: PMC7050259 DOI: 10.1002/2211-5463.12736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023] Open
Abstract
Current methods for tendon rupture repair suffer from two main drawbacks: insufficient strength and adhesion formation, which lead to rerupture and impaired gliding. A novel polymer tube may help to overcome these problems by allowing growth factor delivery to the wound site and adhesion reduction, and by acting as a physical barrier to the surrounding tissue. In this study, we used a bilayered DegraPol® tube to deliver PDGF-BB to the wound site in a full-transection rabbit Achilles tendon model. We then performed histological and immunohistochemical analysis at 3 weeks postoperation. Sustained delivery of PDGF-BB to the healing Achilles tendon led to a significantly more homogenous cell distribution within the healing tissue. Lower cell densities next to the implant material were determined for +PDGF-BB samples compared to -PDGF-BB. PDGF-BB application increased proteoglycan content and reduced alpha-SMA+ areas, clusters of different sizes, mainly vessels. Finally, PDGF-BB reduced collagens I and III in the extracellular matrix. The sustained delivery of PDGF-BB via an electrospun DegraPol® tube accelerated tendon wound healing by causing a more uniform cell distribution with higher proteoglycan content and less fibrotic tissue. Moreover, the application of this growth factor reduced collagen III and alpha-SMA, indicating a faster and less fibrotic tendon healing.
Collapse
Affiliation(s)
| | - Olivera Evrova
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichSwitzerland
- Laboratory of Applied MechanobiologyETH ZürichSwitzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichSwitzerland
| | | | - Pietro Giovanoli
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichSwitzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichSwitzerland
| |
Collapse
|
5
|
Impact of UV sterilization and short term storage on the in vitro release kinetics and bioactivity of biomolecules from electrospun scaffolds. Sci Rep 2019; 9:15117. [PMID: 31641201 PMCID: PMC6805903 DOI: 10.1038/s41598-019-51513-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
To effectively translate bioactive scaffolds into a preclinical setting, proper sterilization techniques and storage conditions need to be carefully considered, as the chosen sterilization technique and storage condition might affect the structural and mechanical properties of the scaffolds, as well as the bioactivity and release kinetics of the incorporated biomolecules. Since rarely tested or quantified, we show here in a proof-of-concept study how these parameters are affected by UV sterilization and one week storage at different temperatures using bioactive electrospun DegraPol scaffolds that were specifically designed for application in the field of tendon rupture repair. Even though UV sterilization and the different storage conditions did not impact the morphology or the physicochemical properties of the bioactive scaffolds, UV sterilization caused significant attenuation of the growth factor release kinetics, here platelet derived growth factor (PDGF-BB) release (by approx. 85%) and slight decrease in ascorbic acid release (by approx. 20%). In contrast, 4 °C and −20 °C storage did not have a major effect on the release kinetics of PDGF-BB, while storage at room temperature caused increase in PDGF-BB released. All storage conditions had little effect on ascorbic acid release. Equally important, neither UV sterilization nor storage affected the bioactivity of the released PDGF-BB, suggesting stability of the bioactive scaffolds for at least one week and showing potential for bioactive DegraPol scaffolds to be translated into an off-the-shelf available product. These parameters are expected to be scaffold and protein-dependent.
Collapse
|
6
|
Buschmann J, Yamada Y, Schulz-Schönhagen K, Hess SC, Stark WJ, Opelz C, Bürgisser GM, Weder W, Jungraithmayr W. Hybrid nanocomposite as a chest wall graft with improved integration by adipose-derived stem cells. Sci Rep 2019; 9:10910. [PMID: 31358841 PMCID: PMC6662805 DOI: 10.1038/s41598-019-47441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Surgery of the chest wall is potentially required to cover large defects after removal of malignant tumours. Usually, inert and non-degradable Gore-Tex serves to replace the missing tissue. However, novel biodegradable materials combined with stem cells are available that stimulate the healing. Based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) and pure PLGA, a dual layer biodegradable hybrid nanocomposite was generated. Mouse adipose-derived stem cells were cultered on electrospun disks (ASCs of C57BL/6), and biomechanical tests were performed. The cell-seeded scaffolds were engrafted in C57BL/LY5.1 mice to serve as a chest wall substitute. Cell invasion into the bi-layered material, extent of CD45+ cells, inflammatory response, neo-vascularization and ECM composition were determined at 1 and 2 months post-surgery, respectively. The bi-layered hybrid nanocomposite was stable after a 2-week in vitro culture, in contrast to PLGA/aCaP without a PLGA layer. There was a complete biointegration and good vascularization in vivo. The presence of ASCs attracted more CD45+ cells (hematopoietic origin) compared to cell-free scaffolds. Inflammatory reaction was similar for both groups (±ASCs) at 8 weeks. A bi-layered hybrid nanocomposite fabricated of electrospun PLGA/aCaP and a reinforcing layer of pristine PLGA is an ideal scaffold for chest wall reconstruction. It is stable and allows a proper host tissue integration. If ASCs are seeded, they attract more CD45+ cells, supporting the regeneration process.
Collapse
Affiliation(s)
- Johanna Buschmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| | - Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Konstantin Schulz-Schönhagen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Samuel C Hess
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Christine Opelz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
7
|
Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1963. [PMID: 30322082 PMCID: PMC6213815 DOI: 10.3390/ma11101963] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Tendon and ligament tissue regeneration and replacement are complex since scaffolds need to guarantee an adequate hierarchical structured morphology, and non-linear mechanical properties. Moreover, to guide the cells' proliferation and tissue re-growth, scaffolds must provide a fibrous texture mimicking the typical of the arrangement of the collagen in the extracellular matrix of these tissues. Among the different techniques to produce scaffolds, electrospinning is one of the most promising, thanks to its ability to produce fibers of nanometric size. This manuscript aims to provide an overview to researchers approaching the field of repair and regeneration of tendons and ligaments. To clarify the general requirements of electrospun scaffolds, the first part of this manuscript presents a general overview concerning tendons' and ligaments' structure and mechanical properties. The different types of polymers, blends and particles most frequently used for tendon and ligament tissue engineering are summarized. Furthermore, the focus of the review is on describing the different possible electrospinning setups and processes to obtain different nanofibrous structures, such as mats, bundles, yarns and more complex hierarchical assemblies. Finally, an overview concerning how these technologies are exploited to produce electrospun scaffolds for tendon and ligament tissue applications is reported together with the main findings and outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum-Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
8
|
Meier Bürgisser G, Calcagni M, Bachmann E, Fessel G, Snedeker JG, Giovanoli P, Buschmann J. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery. Biol Open 2016; 5:1324-33. [PMID: 27635037 PMCID: PMC5051656 DOI: 10.1242/bio.020644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. Summary: The rabbit Achilles tendon full transection model can be used to study adhesion extent in a controlled way. It also mimics the biomechanics of human hand flexor tendons.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, Zurich 8091, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, Zurich 8091, Switzerland
| | - Elias Bachmann
- Uniklinik Balgrist, Department of Orthopedics, Forchstrasse 340, Zurich 8008, Switzerland
| | - Gion Fessel
- Uniklinik Balgrist, Department of Orthopedics, Forchstrasse 340, Zurich 8008, Switzerland
| | - Jess G Snedeker
- Uniklinik Balgrist, Department of Orthopedics, Forchstrasse 340, Zurich 8008, Switzerland Laboratory for Orthopaedic Biomechanics, Swiss Federal Institute of Technology in Zurich (ETHZ), Rämistrasse 101, Zurich CH-8092, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, Zurich 8091, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, Zurich 8091, Switzerland
| |
Collapse
|
9
|
Evrova O, Houska J, Welti M, Bonavoglia E, Calcagni M, Giovanoli P, Vogel V, Buschmann J. Bioactive, Elastic, and Biodegradable Emulsion Electrospun DegraPol Tube Delivering PDGF-BB for Tendon Rupture Repair. Macromol Biosci 2016; 16:1048-63. [DOI: 10.1002/mabi.201500455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Olivera Evrova
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
- Laboratory of Applied Mechanobiology; ETH Zürich; Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Joanna Houska
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
| | - Manfred Welti
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
| | - Eliana Bonavoglia
- ab medica; Via J. F. Kennedy 10/12 20023 Cerro Maggiore (Milan) Italy
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology; ETH Zürich; Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery; University Hospital Zürich; Sternwartstrasse 14 8091 Zürich Switzerland
| |
Collapse
|
10
|
Horst M, Milleret V, Noetzli S, Gobet R, Sulser T, Eberli D. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. J Biomed Mater Res B Appl Biomater 2015; 105:658-667. [DOI: 10.1002/jbm.b.33591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Maya Horst
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Zurich Switzerland
| | - Sarah Noetzli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Rita Gobet
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
11
|
Kivrak Pfiffner F, Waschkies C, Tian Y, Woloszyk A, Calcagni M, Giovanoli P, Rudin M, Buschmann J. A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. Tissue Eng Part C Methods 2014; 21:339-46. [PMID: 25266825 DOI: 10.1089/ten.tec.2014.0212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adequate vascularization in biomaterials is essential for tissue regeneration and repair. Current models do not allow easy analysis of vascularization of implants in vivo, leaving it a highly desirable goal. A tool that allows monitoring of perfusion capacity of such biomaterials noninvasively in a cheap, efficient, and reliable in vivo model would hence add great benefit to research in this field. We established, for the first time, an in vivo magnetic resonance imaging (MRI) method to quantify the perfusion capacity of a model biomaterial, DegraPol(®) foam scaffold, placed on the embryonic avian chorioallantoic membrane (CAM) in ovo. Perfusion capacity was assessed through changes in the longitudinal relaxation rate before and after injection of a paramagnetic MRI contrast agent, Gd-DOTA (Dotarem(®); Guerbet S.A.). Relaxation rate changes were compared in three different regions of the scaffold, that is, at the interface to the CAM, in the middle and on the surface of the scaffold (p<0.05). The highest relaxation rate changes, and hence perfusion capacities, were measured in the interface region where the scaffold was attached to the CAM, whereas the surface of the scaffold showed the lowest relaxation rate changes. A strong positive correlation was obtained between relaxation rate changes and histologically determined vessel density (R(2) = 0.983), which corroborates our MRI findings. As a proof-of-principle, we measured the perfusion capacity in different scaffold materials, silk fibroin either with or without human dental pulp stem cells. For these, three to four times larger perfusion capacities were obtained compared to DegraPol; demonstrating that our method is sensitive to reveal such differences. In summary, we present a novel in vivo method for analyzing the perfusion capacity in three-dimensional-biomaterials grown on the CAM, enabling the determination of the perfusion capacity of a large variety of bioengineered materials.
Collapse
Affiliation(s)
- Fatma Kivrak Pfiffner
- 1 Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Prevention of peritendinous adhesions using an electrospun DegraPol polymer tube: a histological, ultrasonographic, and biomechanical study in rabbits. BIOMED RESEARCH INTERNATIONAL 2014; 2014:656240. [PMID: 25101292 PMCID: PMC4101979 DOI: 10.1155/2014/656240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/23/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022]
Abstract
Purpose. One of the great challenges in surgical tendon rupture repair is to minimize peritendinous adhesions. In order to reduce adhesion formation, a physical barrier was applied to a sutured rabbit Achilles tendon, with two different immobilization protocols used postoperatively. Methods. Thirty New Zealand white rabbits received a laceration on the Achilles tendon, sutured with a 4-strand Becker suture, and half of the rabbits got a DegraPol tube at the repair site. While fifteen rabbits had their treated hind leg in a 180° stretched position during 6 weeks (adhesion provoking immobilization), the other fifteen rabbits were recasted with a 150° position after 3 weeks (adhesion inhibiting immobilization). Adhesion extent was analysed macroscopically, via ultrasound and histology. Inflammation was determined histologically. Biomechanical properties were analysed. Results. Application of a DegraPol tube reduced adhesion formation by approximately 20%—independently of the immobilization protocol. Biomechanical properties of extracted specimen were not affected by the tube application. There was no serious inflammatory reaction towards the implant material. Conclusions. Implantation of a DegraPol tube tightly set around a sutured tendon acts as a beneficial physical barrier and prevents adhesion formation significantly—without affecting the tendon healing process.
Collapse
|
13
|
Meier Bürgisser G, Buschmann J. History and performance of implant materials applied as peritendinous antiadhesives. J Biomed Mater Res B Appl Biomater 2014; 103:212-28. [PMID: 24810922 DOI: 10.1002/jbm.b.33182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2014] [Accepted: 04/05/2014] [Indexed: 01/14/2023]
Abstract
Peritendinous fibrotic adhesions after tendon surgery are still a problem up-to-date. Approaches to overcome or at least minimize adhesion formation include implantation of barrier materials, application of lubricants or combinations of materials and functionalized drugs that are controllably released and support the healing tendon to glide and achieve the full range of motion after regeneration. Although a huge amount of different materials have been experimentally tested, the optimal strategy with respect to material and method has not yet been determined. In this review, we present a historical overview of physical barriers as well as liquid agents that have been used in order to prevent peritendinous adhesion formation. The materials are divided according to their first publication into two time frames; before and after 1980. There is no claim to include all materials tested neither will the "best" material be chosen; however, we present several materials that were experimentally tested in different animal trials as well as in clinical trials in contrast to other materials that were only tested once and disappeared from the assortment of anti-adhesives; which as such is a valuable information about its applicability for this purpose.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | |
Collapse
|
14
|
Buschmann J, Puippe G, Bürgisser GM, Bonavoglia E, Giovanoli P, Calcagni M. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue. Connect Tissue Res 2014; 55:123-31. [PMID: 24283274 DOI: 10.3109/03008207.2013.870162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. MATERIALS AND METHODS Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. RESULTS The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. CONCLUSIONS These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.
Collapse
Affiliation(s)
- Johanna Buschmann
- Department for Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|