1
|
Nitahara-Kasahara Y, Posadas-Herrera G, Hirai K, Oda Y, Snagu-Miyamoto N, Yamanashi Y, Okada T. Characterization of disease-specific alterations in metabolites and effects of mesenchymal stromal cells on dystrophic muscles. Front Cell Dev Biol 2024; 12:1363541. [PMID: 38946797 PMCID: PMC11211584 DOI: 10.3389/fcell.2024.1363541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding gene that leads to muscle necrosis and degeneration with chronic inflammation during growth, resulting in progressive generalized weakness of the skeletal and cardiac muscles. We previously demonstrated the therapeutic effects of systemic administration of dental pulp mesenchymal stromal cells (DPSCs) in a DMD animal model. We showed preservation of long-term muscle function and slowing of disease progression. However, little is known regarding the effects of cell therapy on the metabolic abnormalities in DMD. Therefore, here, we aimed to investigate the mechanisms underlying the immunosuppressive effects of DPSCs and their influence on DMD metabolism. Methods A comprehensive metabolomics-based approach was employed, and an ingenuity pathway analysis was performed to identify dystrophy-specific metabolomic impairments in the mdx mice to assess the therapeutic response to our established systemic DPSC-mediated cell therapy approach. Results and Discussion We identified DMD-specific impairments in metabolites and their responses to systemic DPSC treatment. Our results demonstrate the feasibility of the metabolomics-based approach and provide insights into the therapeutic effects of DPSCs in DMD. Our findings could help to identify molecular marker targets for therapeutic intervention and predict long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kunio Hirai
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Yuki Oda
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Noriko Snagu-Miyamoto
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
- Division of Oral and Maxillofacial Surgical, Tokyo Women’s Medical School, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Gancheva MR, Kremer K, Breen J, Arthur A, Hamilton-Bruce A, Thomas P, Gronthos S, Koblar S. Effect of Octamer-Binding Transcription Factor 4 Overexpression on the Neural Induction of Human Dental Pulp Stem Cells. Stem Cell Rev Rep 2024; 20:797-815. [PMID: 38316679 PMCID: PMC10984899 DOI: 10.1007/s12015-024-10678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Stem cell-based therapy is a potential alternative strategy for brain repair, with neural stem cells (NSC) presenting as the most promising candidates. Obtaining sufficient quantities of NSC for clinical applications is challenging, therefore alternative cell types, such as neural crest-derived dental pulp stem cells (DPSC), may be considered. Human DPSC possess neurogenic potential, exerting positive effects in the damaged brain through paracrine effects. However, a method for conversion of DPSC into NSC has yet to be developed. Here, overexpression of octamer-binding transcription factor 4 (OCT4) in combination with neural inductive conditions was used to reprogram human DPSC along the neural lineage. The reprogrammed DPSC demonstrated a neuronal-like phenotype, with increased expression levels of neural markers, limited capacity for sphere formation, and enhanced neuronal but not glial differentiation. Transcriptomic analysis further highlighted the expression of genes associated with neural and neuronal functions. In vivo analysis using a developmental avian model showed that implanted DPSC survived in the developing central nervous system and respond to endogenous signals, displaying neuronal phenotypes. Therefore, OCT4 enhances the neural potential of DPSC, which exhibited characteristics aligning with neuronal progenitors. This method can be used to standardise DPSC neural induction and provide an alternative source of neural cell types.
Collapse
Affiliation(s)
- Maria R Gancheva
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, 5005, Australia.
| | - Karlea Kremer
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - James Breen
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Agnes Arthur
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Anne Hamilton-Bruce
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, 5011, Australia
| | - Paul Thomas
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Simon Koblar
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
3
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
4
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Stem Cell Therapy in Diabetic Polyneuropathy: Recent Advancements and Future Directions. Brain Sci 2023; 13:brainsci13020255. [PMID: 36831798 PMCID: PMC9954679 DOI: 10.3390/brainsci13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent, although neglected, complication of long-term diabetes. Nearly 30% of hospitalized and 20% of community-dwelling patients with diabetes suffer from DPN; the incidence rate is approximately 2% annually. To date, there has been no curable therapy for DPN. Under these circumstances, cell therapy may be a vital candidate for the treatment of DPN. The epidemiology, classification, and treatment options for DPN are disclosed in the current review. Cell-based therapies using bone marrow-derived cells, embryonic stem cells, pluripotent stem cells, endothelial progenitor cells, mesenchymal stem cells, or dental pulp stem cells are our primary concern, which may be a useful treatment option to ease or to stop the progression of DPN. The importance of cryotherapies for treating DPN has been observed in several studies. These findings may help for the future researchers to establish more focused, accurate, effective, alternative, and safe therapy to reduce DPN. Cell-based therapy might be a permanent solution in the treatment and management of diabetes-induced neuropathy.
Collapse
|
6
|
Diederich A, Fründ HJ, Trojanowicz B, Navarrete Santos A, Nguyen AD, Hoang-Vu C, Gernhardt CR. Influence of Ascorbic Acid as a Growth and Differentiation Factor on Dental Stem Cells Used in Regenerative Endodontic Therapies. J Clin Med 2023; 12:jcm12031196. [PMID: 36769844 PMCID: PMC9917775 DOI: 10.3390/jcm12031196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin C is one of the major extracellular nonenzymatic antioxidants involved in the biosynthesis of collagen. It promotes the growth of fibroblasts, wound healing processes, and enhances the survival and differentiation of osteoblasts. The potential effects of ascorbic acid on human dental pulp cells (DPC) and the cells of the apical papilla (CAP) used in actual regenerative endodontic procedures remain largely unknown. In this study, we investigated the possible employment of ascorbic acid in the differentiation and regenerative therapies of DPC and CAP. METHODS Nine extracted human wisdom teeth were selected for this study. Subpopulations of stem cells within DPC and CAP were sorted with the mesenchymal stem cell marker STRO-1, followed by treatments with different concentrations (0 mM, 0.1 mM, 0.5 mM, and 1.0 mM) of ascorbic acid (AA), RT-PCR, and Western blot analysis. RESULTS FACS analysis revealed the presence of cell subpopulations characterized by a strong expression of mesenchymal stem cell marker STRO-1 and dental stem cell markers CD105, CD44, CD146, CD90, and CD29. Treatment of the cells with defined amounts of AA revealed a markedly increased expression of proliferation marker Ki-67, especially in the concentration range between 0.1 mM and 0.5 mM. Further investigations demonstrated that treatment with AA led to significantly increased expression of common stem cell markers OCT4, Nanog, and Sox2. The most potent proliferative and expressional effects of AA were observed in the concentration of 0.1 mM. CONCLUSIONS AA might be a novel and potent growth promoter of human dental cells. Increasing the properties of human dental pulp cells and the cells of the apical papilla using AA could be a useful factor for further clinical developments of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Antje Diederich
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
- Correspondence: ; Tel.: +49-345-557-3737
| | - Hanna Juliane Fründ
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | - Anh Duc Nguyen
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
- Private Dental Practice, Dr. Juliane Gernhardt, 06120 Halle, Germany
| | - Cuong Hoang-Vu
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Christian Ralf Gernhardt
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| |
Collapse
|
7
|
The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Acta Biomater 2023; 156:190-201. [PMID: 36155098 DOI: 10.1016/j.actbio.2022.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene expression. Second, differentiation regimens of 2-week osteogenic pre-induction in 2D before bioprinting and/or 3-week post-printing osteogenic differentiation were assessed for their capacity to increase the bioprinted construct's biofunctionality towards bone regeneration. The combination of pre-and post-induction regimens showed superior osteogenic gene expression and mineralisation in vitro. Moreover, a rat calvarial model using microtomography and histology demonstrated bone regeneration potential for the pre-and post-differentiation procedure. This study shows the positive impact of bioprinting on cells for osteogenic differentiation and the increased in vivo osteogenic potential of bioprinted constructs via a pre-induction method. STATEMENT OF SIGNIFICANCE: 3D bioprinting, one of the most recent technologies for tissue engineering has mostly focussed on developing methods for enhancing printing properties, little is understood on the biological impact of bioprinting and /or subsequent in vitro maturation methods on cells. Therefore, we addressed these fundamental questions by investigating osteoblast gene expression in bioprinted construct and assessed the efficacy of several induction regimen towards osteogenic differentiation in vitro and in vivo. Osteogenic induction of cells prior to seeding in scaffolds used in conventional tissue engineering applications has been demonstrated to increase the osteogenic potential of the resulting construct. However, to the best of our knowledge, pre-induction methods have not been investigated in 3D bioprinting.
Collapse
|
8
|
Ranjbar E, Tavakol Afshari J, KhajaviRad A, Ebrahimzadeh-Bideskan A, Shafieian R. Insights into the protective capacity of human dental pulp stem cells and its secretome in cisplatin-induced nephrotoxicity: effects on oxidative stress and histological changes. J Basic Clin Physiol Pharmacol 2022; 34:349-356. [PMID: 36201655 DOI: 10.1515/jbcpp-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute renal injury (AKI) is a major limiting factor for cisplatin administration. Recent evidence suggests the potential contribution of mesenchymal stem cells (MSCs) to rehabilitation from several disorders via both direct and indirect routes. Thus, the present study aimed, for the first time, to explore and compare the reno-protective potential of human dental pulp-derived stem cells (hDPSCs) vs. hDPSC-conditioned medium (hDPSC-CM) in recovery of impaired kidney tissues in a rat animal model of cisplatin-induced AKI. METHODS AKI was induced via cisplatin injection (n=36). One day after, 24 rats were treated with either hDPSCs or hDPSC-CM (n=12). An extra set of rats (n=12) served as sham group. On days 2 or 7 (n=6), rats were humanly sacrificed for further analysis. Renal injury was explored via measuring serum creatinine and BUN. Renal level of oxidative stress was assessed by determining malondialdehyde, and enzymatic activities of superoxide dismutase and catalase. Renal histopathological changes were scored for comparison among different experimental groups. RESULTS A single dose of cisplatin resulted in considerable renal dysfunction and oxidative stress. Treatment with hDPSCs or hDPSC-CM resulted in significantly restored renal function, reduced level of oxidative stress, and improved histopathological manifestations. Furthermore, as compared to hDPSC-CM, administration of hDPSCs led to superior results in AKI-induced animals. CONCLUSIONS The current study described the first comparative evidence of reno-protective potential of hDPSCs and their CM against cisplatin-induced nephrotoxicity in an AKI rat model, proposing them as useful adjunctive therapy in AKI. Yet, future explorations are still needed.
Collapse
Affiliation(s)
- Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl KhajaviRad
- Department of Physiology and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Cho YD, Kim KH, Lee YM, Ku Y, Seol YJ. Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation. J Periodontal Implant Sci 2022; 52:437-454. [PMID: 36468465 PMCID: PMC9807848 DOI: 10.5051/jpis.2103760188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023] Open
Abstract
Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
11
|
Effect of Different Intracanal Medicaments on the Viability and Survival of Dental Pulp Stem Cells. J Pers Med 2022; 12:jpm12040575. [PMID: 35455691 PMCID: PMC9032254 DOI: 10.3390/jpm12040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Stem cells play an important role in the success of regenerative endodontic procedures. They are affected by the presence of medicaments that are used before the induction of bleeding or the creation of a scaffold for endodontic regeneration. This study examines the effects of different intracanal medicaments on the viability and survival of dental pulp stem cells at different doses and over different exposure times. Methods: Dental pulp stem cells were cultured from healthy third molar teeth using the long-term explant culture method and characterized using flow cytometry and exposed to different concentrations of calcium hydroxide, doxycycline, potassium iodide, triamcinolone, and glutaraldehyde, each ranging from 0 (control) to 1000 µg/mL. Exposure times were 6, 24, and 48 h. Cell viability was measured using the MTT assay, and apoptosis was measured using the Annexin V-binding assay. Results: All medicaments significantly reduced cell viability at different concentrations over different exposure times. Calcium hydroxide and triamcinolone favored cell viability at higher concentrations during all exposure times compared to other medicaments. The apoptosis assay showed a significant increase in cell death on exposure to doxycycline, potassium iodide, and glutaraldehyde. Conclusion: The intracanal medicaments examined in our study affected the viability of dental pulp stem cells in a time and dose-dependent manner. They also adversely affected the survival of dental pulp stem cells. Further studies are needed to better understand the effect of prolonged exposure to medicaments according to clinical protocols and their effect on the stemness of dental pulp stem cells.
Collapse
|
12
|
Nito C, Suda S, Nitahara-Kasahara Y, Okada T, Kimura K. Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines 2022; 10:biomedicines10040737. [PMID: 35453487 PMCID: PMC9032844 DOI: 10.3390/biomedicines10040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine aims to restore human functions by regenerating organs and tissues using stem cells or living tissues for the treatment of organ and tissue defects or dysfunction. Clinical trials investigating the treatment of cerebral infarction using mesenchymal stem cells, a type of somatic stem cell therapy, are underway. The development and production of regenerative medicines using somatic stem cells is expected to contribute to the treatment of cerebral infarction, a central nervous system disease for which there is no effective treatment. Numerous experimental studies have shown that cellular therapy, including the use of human dental pulp stem cells, is an attractive strategy for patients with ischemic brain injury. This review describes the basic research, therapeutic mechanism, clinical trials, and future prospects for dental pulp stem cell therapy, which is being investigated in Japan in first-in-human clinical trials for the treatment of patients with acute cerebral ischemia.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
- Collaborative Research Center, Laboratory for Clinical Research, Nippon Medical School, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5814-6176
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| |
Collapse
|
13
|
Y Baena AR, Casasco A, Monti M. Hypes and Hopes of Stem Cell Therapies in Dentistry: a Review. Stem Cell Rev Rep 2022; 18:1294-1308. [PMID: 35015212 PMCID: PMC8748526 DOI: 10.1007/s12015-021-10326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
One of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andrea Casasco
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy.,Dental & Face Center, CDI, Milan, Italy
| | - Manuela Monti
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy. .,Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
14
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs’ heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
15
|
Khodabandeh Z, Haghighat S, Tanideh N, Zare S, Farrokhi F, Karandish M, Iraji A. Comparing the effects of Elaegnus Angustifolia, Hypericum Perforatum and Psidium Guajava extracts on metabolic activity of dental pulp-derived mesenchymal stem cells. Cell Tissue Bank 2021; 23:143-155. [PMID: 33843009 DOI: 10.1007/s10561-021-09923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Dental pulp derived-mesenchymal stem cells (DP-MSCs) is considered a suitable are candidate for tissue engineering techniques and osseous reconstruction. Based on the hypothesis that Hypericum perforatum, Elaeagnus Angustifolia and Psidium guajava extracts can be used in cell-based bone tissue engineering due to meagre cytotoxicity response in the cell culture medium, their effects on the viability and metabolic activity of DP-MSCs were investigated and compared with each extract. DP-MSCs were extracted from human dental pulp, characterized by flow cytometry, and differentiated into Osteogenic and adipogenic lineages which were then cultured in different concentrations of E. Angustifolia, H. perforatum and P. guajava extracts at different time intervals followed by MTT assay evaluation. The dental pulp mesenchymal stem cells were evaluated for their plastic adherence ability, fibroblast-like and spindle morphology. According to flow cytometry data, isolated cells from DP-MSCs expressed MSCs markers. A comparison of herbal extracts' concentrations revealed that 500 μg/ml was toxic to dental pulp stem cells, a guide to the toxic dose for DP-MSCs. The P.guajava bore low toxicity and increased dental pulp stem cell viability in comparison to the other two herbal extracts. The hydro-alcoholic extracts of E. Angustifolia, H. perforatum, and P. guajava were efficient in DP-MSCs viability, and therefore were concluded to be useful in maintaining structural and functional cell viability. It was also concluded that the co-culture of stem cells with herbal elements could stimulate endogenous factors to enhance the proliferation and viability of MSCs.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sara Haghighat
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farnaz Farrokhi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Karandish
- Orthodontic Department, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Ghasrdasht St, Shiraz, Iran
| |
Collapse
|
16
|
Bosch BM, Salero E, Núñez-Toldrà R, Sabater AL, Gil FJ, Perez RA. Discovering the Potential of Dental Pulp Stem Cells for Corneal Endothelial Cell Production: A Proof of Concept. Front Bioeng Biotechnol 2021; 9:617724. [PMID: 33585434 PMCID: PMC7876244 DOI: 10.3389/fbioe.2021.617724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Failure of corneal endothelium cell monolayer is the main cause leading to corneal transplantation. Autologous cell-based therapies are required to reconstruct in vitro the cell monolayer. Several strategies have been proposed using embryonic stem cells and induced pluripotent stem cells, although their use has ethical issues as well as limited clinical applications. For this purpose, we propose the use of dental pulp stem cells isolated from the third molars to form the corneal endothelium cell monolayer. We hypothesize that using dental pulp stem cells that share an embryological origin with corneal endothelial cells, as they both arise from the neural crest, may allow a direct differentiation process avoiding the use of reprogramming techniques, such as induced pluripotent stem cells. In this work, we report a two-step differentiation protocol, where dental pulp stem cells are derived into neural crest stem-like cells and, then, into corneal endothelial-like cells. Initially, for the first-step we used an adhesion culture and compared two initial cell sources: a direct formation from dental pulp stem cells with the differentiation from induced pluripotent stem cells. Results showed significantly higher levels of early stage marker AP2 for the dental pulp stem cells compared to induced pluripotent stem cells. In order to provide a better environment for neural crest stem cells generation, we performed a suspension method, which induced the formation of neurospheres. Results showed that neurosphere formation obtained the peak of neural crest stem cell markers expression after 4 days, showing overexpression of AP2, Nestin, and p75 markers, confirming the formation of neural crest stem-like cells. Furthermore, pluripotent markers Oct4, Nanog, and Sox2 were as well-upregulated in suspension culture. Neurospheres were then directly cultured in corneal endothelial conditioned medium for the second differentiation into corneal endothelial-like cells. Results showed the conversion of dental pulp stem cells into polygonal-like cells expressing higher levels of ZO-1, ATP1A1, COL4A2, and COL8A2 markers, providing a proof of the conversion into corneal endothelial-like cells. Therefore, our findings demonstrate that patient-derived dental pulp stem cells may represent an autologous cell source for corneal endothelial therapies that avoids actual transplantation limitations as well as reprogramming techniques.
Collapse
Affiliation(s)
- Begoña M Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Enrique Salero
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Raquel Núñez-Toldrà
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Alfonso L Sabater
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - F J Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
17
|
Nitahara-Kasahara Y, Kuraoka M, Guillermo PH, Hayashita-Kinoh H, Maruoka Y, Nakamura-Takahasi A, Kimura K, Takeda S, Okada T. Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy. Stem Cell Res Ther 2021; 12:78. [PMID: 33494794 PMCID: PMC7831244 DOI: 10.1186/s13287-020-02099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Posadas Herrera Guillermo
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Koichi Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan.
| |
Collapse
|
18
|
Epigenetic Regulation of Dental Pulp Stem Cell Fate. Stem Cells Int 2020; 2020:8876265. [PMID: 33149742 PMCID: PMC7603635 DOI: 10.1155/2020/8876265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs, affects gene expression without modifying the primary DNA sequence and modulates cell fate. Mesenchymal stem cells derived from dental pulp, also called dental pulp stem cells (DPSCs), exhibit multipotent differentiation capacity and can promote various biological processes, including odontogenesis, osteogenesis, angiogenesis, myogenesis, and chondrogenesis. Over the past decades, increased attention has been attracted by the use of DPSCs in the field of regenerative medicine. According to a series of studies, epigenetic regulation is essential for DPSCs to differentiate into specialized cells. In this review, we summarize the mechanisms involved in the epigenetic regulation of the fate of DPSCs.
Collapse
|
19
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
20
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
22
|
Abdelaz P, ElZoghbi A, Shokry M, Ahmed AZ, Rasha H. Reparative Dentin Formation Using Stem Cell Therapy versus Calcium Hydroxide in Direct Pulp Capping: An Animal Study. Braz Dent J 2019; 30:542-549. [PMID: 31800747 DOI: 10.1590/0103-6440201902711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/17/2019] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping process is a therapeutic method aimed at maintenance of pulp vitality and health by using a biocompatible material placed directly over the exposed pulp. The aim of this study was to evaluate and compare the effect of direct pulp capping procedures by dental pulp stem cells (DPSCs) or calcium hydroxide on dentin tissue formation. Three mongrel dogs were used as experimental model. Two access cavities were prepared in the right and left mandibular fourth premolars in all dogs to expose and extirpate the pulp tissues which were processed in the lab to obtain a single-cell suspensions. The isolated cells were cultures in odontogenic medium for subsequent differentiation. The maxillary teeth (3 incisors and one canine) of the corresponding dog number were subjected to class V cavities to expose their pulps which were assigned into 2 groups of 12 teeth each ( group I - pulp capping with calcium hydroxide) and (group II - pulp capping with dental stem cells DPSCs). The operated teeth were collected after 3 months and processed for histological and electron microscopic examinations. Specimens were subjected to elemental analysis of calcium and phosphorus. EDX elemental analysis revealed significant differences in the calcium and phosphorous wt, % in the reparative dentin of calcium hydroxide treated group which confirmed histologically. Direct pulp capping by DPSCs has shown promising generative potential for regaining normal dentin.
Collapse
Affiliation(s)
- Possy Abdelaz
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Amira ElZoghbi
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Mohamed Shokry
- Department of Surgery, Anesthesiology ?αμπ; Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abo-Zeid Ahmed
- Basic Dental Sciences, Dental Research Division, National Research Center, Giza, Egypt
| | - Hassan Rasha
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Stovall KE, Tran TDN, Suantawee T, Yao S, Gimble JM, Adisakwattana S, Cheng H. Adenosine triphosphate enhances osteoblast differentiation of rat dental pulp stem cells via the PLC-IP 3 pathway and intracellular Ca 2+ signaling. J Cell Physiol 2019; 235:1723-1732. [PMID: 31301074 DOI: 10.1002/jcp.29091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Intracellular Ca2+ signals are essential for stem cell function and play a significant role in the differentiation process. Dental pulp stem cells (DPSCs) are a potential source of stem cells; however, the mechanisms controlling cell differentiation remain largely unknown. Utilizing rat DPSCs, we examined the effect of adenosine triphosphate (ATP) on osteoblast differentiation and characterized its mechanism of action using real-time Ca 2+ imaging analysis. Our results revealed that ATP enhanced osteogenesis as indicated by Ca 2+ deposition in the extracellular matrix via Alizarin Red S staining. This was consistent with upregulation of osteoblast genes BMP2, Mmp13, Col3a1, Ctsk, Flt1, and Bgn. Stimulation of DPSCs with ATP (1-300 µM) increased intracellular Ca 2+ signals in a concentration-dependent manner, whereas histamine, acetylcholine, arginine vasopressin, carbachol, and stromal-cell-derived factor-1α failed to do so. Depletion of intracellular Ca 2+ stores in the endoplasmic reticulum by thapsigargin abolished the ATP responses which, nevertheless, remained detectable under extracellular Ca 2+ free condition. Furthermore, the phospholipase C (PLC) inhibitor U73122 and the inositol triphosphate (IP 3 ) receptor inhibitor 2-aminoethoxydiphenyl borate inhibited the Ca 2+ signals. Our findings provide a better understanding of how ATP controls osteogenesis in DPSCs, which involves a Ca 2+ -dependent mechanism via the PLC-IP 3 pathway. This knowledge could help improve osteogenic differentiation protocols for tissue regeneration of bone structures.
Collapse
Affiliation(s)
- Kelsie E Stovall
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Tran D N Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Tanyawan Suantawee
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans Bioinnovation Center, New Orleans, Louisiana.,Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, Louisiana
| | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
24
|
Gancheva MR, Kremer KL, Gronthos S, Koblar SA. Using Dental Pulp Stem Cells for Stroke Therapy. Front Neurol 2019; 10:422. [PMID: 31110489 PMCID: PMC6501465 DOI: 10.3389/fneur.2019.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading cause of permanent disability world-wide, but aside from rehabilitation, there is currently no clinically-proven pharmaceutical or biological agent to improve neurological disability. Cell-based therapies using stem cells, such as dental pulp stem cells, are a promising alternative for treatment of neurological diseases, including stroke. The ischaemic environment in stroke affects multiple cell populations, thus stem cells, which act through cellular and molecular mechanisms, are promising candidates. The most common stem cell population studied in the neurological setting has been mesenchymal stem cells due to their accessibility. However, it is believed that neural stem cells, the resident stem cell of the adult brain, would be most appropriate for brain repair. Using reprogramming strategies, alternative sources of neural stem and progenitor cells have been explored. We postulate that a cell of closer origin to the neural lineage would be a promising candidate for reprogramming and modification towards a neural stem or progenitor cell. One such candidate population is dental pulp stem cells, which reside in the root canal of teeth. This review will focus on the neural potential of dental pulp stem cells and their investigations in the stroke setting to date, and include an overview on the use of different sources of neural stem cells in preclinical studies and clinical trials of stroke.
Collapse
Affiliation(s)
- Maria R. Gancheva
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karlea L. Kremer
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Simon A. Koblar
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
25
|
La Noce M, Mele L, Laino L, Iolascon G, Pieretti G, Papaccio G, Desiderio V, Tirino V, Paino F. Cytoplasmic Interactions between the Glucocorticoid Receptor and HDAC2 Regulate Osteocalcin Expression in VPA-Treated MSCs. Cells 2019; 8:cells8030217. [PMID: 30841579 PMCID: PMC6468918 DOI: 10.3390/cells8030217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation has been considered an important mechanism for influencing stem cell differentiation. In particular, histone deacetylases (HDACs) have been shown to play a role in the osteoblast differentiation of mesenchymal stem cells (MSCs). In this study, the effect of the HDAC inhibitor, valproic acid (VPA), on bone formation in vivo by MSCs was determined. Surprisingly, VPA treatment, unlike other HDAC inhibitors, produced a well-organized lamellar bone tissue when MSCs–collagen sponge constructs were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, although a decrease of osteocalcin (OC) expression was observed. Consequently, we decided to investigate the molecular mechanisms by which VPA exerts such effects on MSCs. We identified the glucocorticoid receptor (GR) as being responsible for that downregulation, and suggested a correlation between GR and HDAC2 inhibition after VPA treatment, as evidenced by HDAC2 knockdown. Furthermore, using co-immunoprecipitation analysis, we showed for the first time in the cytoplasm, binding between GR and HDAC2. Additionally, chromatin immunoprecipitation (ChIP) assays confirmed the role of GR in OC downregulation, showing recruitment of GR to the nGRE element in the OC promoter. In conclusion, our results highlight the existence of a cross-talk between GR and HDAC2, providing a mechanistic explanation for the influence of the HDAC inhibitor (namely VPA) on osteogenic differentiation in MSCs. Our findings open new directions in targeted therapies, and offer new insights into the regulation of MSC fate determination.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania, "Luigi Vanvitelli", 80121 Naples, Italy.
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy.
| | - Gorizio Pieretti
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania, "Luigi Vanvitelli", 80121 Naples, Italy.
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Francesca Paino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
26
|
Almeida PN, Barboza DDN, Luna EB, Correia MCDM, Dias RB, Siquara de Sousa AC, Duarte MEL, Rossi MID, Cunha KS. Increased extracellular matrix deposition during chondrogenic differentiation of dental pulp stem cells from individuals with neurofibromatosis type 1: an in vitro 2D and 3D study. Orphanet J Rare Dis 2018; 13:98. [PMID: 29941005 PMCID: PMC6020206 DOI: 10.1186/s13023-018-0843-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) presents a wide range of clinical manifestations, including bone alterations. Studies that seek to understand cellular and molecular mechanisms underlying NF1 orthopedic problems are of great importance to better understand the pathogenesis and the development of new therapies. Dental pulp stem cells (DPSCs) are being used as an in vitro model for several diseases and appear as a suitable model for NF1. The aim of this study was to evaluate in vitro chondrogenic differentiation of DPSCs from individuals with NF1 using two-dimensional (2D) and three-dimensional (3D) cultures. Results To fulfill the criteria of the International Society for Cellular Therapy, DPSCs were characterized by surface antigen expression and by their multipotentiality, being induced to differentiate towards adipogenic, osteogenic, and chondrogenic lineages in 2D cultures. Both DPSCs from individuals with NF1 (NF1 DPSCs) and control cultures were positive for CD90, CD105, CD146 and negative for CD13, CD14, CD45 and CD271, and successfully differentiated after the protocols. Chondrogenic differentiation was evaluated in 2D and in 3D (pellet) cultures, which were further evaluated by optical microscopy and transmission electron microscopy (TEM). 2D cultures showed greater extracellular matrix deposition in NF1 DPSCs comparing with controls during chondrogenic differentiation. In semithin sections, control pellets hadhomogenous-sized intra and extracelullar matrix vesicles, whereas NF1 cultures had matrix vesicles of different sizes. TEM analysis showed higher amount of collagen fibers in NF1 cultures compared with control cultures. Conclusion NF1 DPSCs presented increased extracellular matrix deposition during chondrogenic differentiation, which could be related to skeletal changes in individuals with NF1. Electronic supplementary material The online version of this article (10.1186/s13023-018-0843-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Nascimento Almeida
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deuilton do Nascimento Barboza
- Oral and Maxillofacial Surgery, Antônio Pedro University Hospital, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Eloá Borges Luna
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rhayra Braga Dias
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Eugenia Leite Duarte
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Isabel Doria Rossi
- Institute of Biomedical Sciences, and Clementino Fraga Filho University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin Soares Cunha
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil. .,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 2017. [PMID: 28649865 DOI: 10.1080/07853890.2017.1347705] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the disclosure of adult mesenchymal stem cells (MSCs), there have been an intense investigation on the characteristics of these cells and their potentialities. Dental stem cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs) and dental follicle precursor cells (DFPCs). These cells are extremely accessible, prevail during all life and own an amazing multipotency. In the past decade, DPSCs and SHED have been thoroughly studied in regenerative medicine and tissue engineering as autologous stem cells therapies and have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and auto-immune conditions, in both animal and human models, and most recently some of them in human clinical trials. In this review, we focus the characteristics, the multiple roles of DSCs and its potential translation to clinical settings. These new insights of the apparently regenerative aptitude of these DSCs seems quite promising to investigate these cells abilities in a wide variety of pathologies. Key messages Dental stem cells (DSCs) have a remarkable self-renewal capacity and multidifferentiation potential; DSCs are extremely accessible and prevail during all life; DSCs, as stem cells therapies, have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and autoimmune conditions; DSCs are becoming extremely relevant in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- João Botelho
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | | | - Vanessa Machado
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | - José João Mendes
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| |
Collapse
|
28
|
Ngoc Tran TD, Stovall KE, Suantawee T, Hu Y, Yao S, Yang LJ, Adisakwattana S, Cheng H. Transient receptor potential melastatin 4 channel is required for rat dental pulp stem cell proliferation and survival. Cell Prolif 2017; 50. [PMID: 28758259 DOI: 10.1111/cpr.12360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Investigate the role of the transient receptor potential melastatin 4 (TRPM4) channel in rat dental pulp stem cell (DPSC) proliferation and survival. MATERIALS AND METHODS Immunofluorescence and FACS analysis were used to detect the stem cell marker CD90. Alizarin Red S and Oil Red O staining were used to identify osteoblast and adipocyte differentiation, respectively. To characterize TRPM4, patch-clamp recordings were obtained from single cells in the whole-cell configuration mode. The significance of TRPM4 for proliferation and survival was examined with 9-phenanthrol, a TRPM4 inhibitor during a 96-hour period of culture. Real-time Ca2+ imaging analysis with Fura-2AM was used to investigate the impact of TRPM4 on intracellular Ca2+ signals. RESULTS DPSCs were CD90-positive and differentiated into osteoblasts. Patch-clamp recordings revealed currents typical of TRPM4 that were Ca2+ -activated, voltage-dependent and Na+ -conducting. Inhibition of TRPM4 resulted in a significant reduction in the cell population after a 96-hr period of culture and transformed the biphasic pattern of intracellular Ca2+ signalling into sustained oscillations. CONCLUSIONS Rat DPSCs have stem cell characteristics and functional TRPM4 channels that are required for proliferation and survival. These data suggest that the shape and frequency of intracellular Ca2+ signals may mediate stem cell proliferation and survival.
Collapse
Affiliation(s)
- T D Ngoc Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - K E Stovall
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - T Suantawee
- Program in Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Y Hu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - S Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - L-J Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - S Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - H Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
29
|
Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: Dentin - pulp complex regeneration approaches (A review). Tissue Cell 2017; 49:552-564. [PMID: 28764928 DOI: 10.1016/j.tice.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023]
Abstract
Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field.
Collapse
Affiliation(s)
- Batool Hashemi-Beni
- Torabinejad Dentistry Research Center and Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khoroushi
- Dental Materials Research Center and Department of Operative and Art, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Foroughi
- Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Khademi
- Torabinejad Dentistry Research Center and Department of Endodonics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Ba P, Duan X, Fu G, Lv S, Yang P, Sun Q. Differential effects of p38 and Erk1/2 on the chondrogenic and osteogenic differentiation of dental pulp stem cells. Mol Med Rep 2017; 16:63-68. [PMID: 28498451 PMCID: PMC5482129 DOI: 10.3892/mmr.2017.6563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The extracellular signal-regulated protein kinase 1/2 (Erk1/2) and p38 mitogen-activated protein-kinase pathways serve important roles in the regulation of osteogenic and chondrogenic differentiation in mesenchymal stem cells (MSCs). However, the exact mechanism remains unclear, and the effect is controversial. In the present study, the effects of Erk1/2 and p38 on the osteogenic and chondrogenic differentiation of dental pulp stem cells (DPSCs) were compared in vitro. The results indicated that inhibition of Erk1/2 is able to enhance the osteogenic differentiation of DPSCs and inhibit chondrogenic differentiation, whereas inhibition of p38 demonstrated the opposite effect. When compared with previous studies, the present study further confirmed that Erk1/2 and p38 serve important, but complicated, roles in regulating the differentiation of MSCs. Different chemical and physical stimuli, cell types, culture methods, times of inhibitor administration and the dosage of the inhibitor may influence the effect of Erk1/2 and p38 on the differentiation of MSCs. The present study aims to better understand the mechanisms that control the differentiation of MSCs and may be helpful in creating more effective tissue regeneration.
Collapse
Affiliation(s)
- Pengfei Ba
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoyu Duan
- National Engineering Laboratory, WeGo Group Co., Ltd., Weihai, Shandong 264210, P.R. China
| | - Guo Fu
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong 264200, P.R. China
| | - Shuyan Lv
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong 264200, P.R. China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinfeng Sun
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
31
|
The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Arch Immunol Ther Exp (Warsz) 2017; 65:363-379. [DOI: 10.1007/s00005-017-0460-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
|
32
|
Chattong S, Rungsiwiwut R, Yindeedej W, Sereemaspun A, Pruksananonda K, Virutamasen P, Setpakdee A, Manotham K. Original article. Human dental pulp stem cells as a potential feeder layer for human embryonic stem cell culture. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0803.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Background: Human embryonic stem (hES) cells are pluripotent, and can differentiate into three germ layers. Traditionally, cultures of hES cells are maintained in a system containing mouse embryonic fibroblasts as a feeder layer for support of undifferentiated growth. However, contamination by animal cells limits the use of hES cells.
Objective: We evaluated the use of human dental pulp stem cells (hDPSCs) as a feeder layer for hES cell culture. It should be possible to obtain a new source of human mesenchymal stem cells for feeder cells to maintain undifferentiated growth of hES cells.
Methods: hDPSCs from removed impacted wisdom teeth (third molars) were extracted, cultured, and characterized for mesenchymal stem cell properties. Furthermore, hDPSCs were used as a feeder layer for culturing Chula2 and Chula5 hES cell lines. Finally, hES cell lines grown on hDPSCs feeders were examined embryonic stem cell properties.
Results: We found that hDPSCs, which have mesenchymal properties, can support undifferentiated growth of hES cell lines. After prolonged culture (passage 17), these hES cell lines still maintain ES cell properties including typical morphology seen in hES cells, the expression of pluripotency markers (Oct4, Sox2, Nanog, Rex1, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), embryoid body formation and retention of a normal karyotype.
Conclusion: hDPSCs, derived from the pulp tissue of impacted third molars, are a potential source of human feeder cells for the culture of undifferentiated hES cells.
Collapse
Affiliation(s)
- Supreecha Chattong
- Renal Unit, Department of Medicine, Lerdsin General Hospital, Bangkok 10500, Thailand
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wittaya Yindeedej
- Renal Unit, Department of Medicine, Lerdsin General Hospital, Bangkok 10500, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamthorn Pruksananonda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pramuan Virutamasen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anant Setpakdee
- Renal Unit, Department of Medicine, Lerdsin General Hospital, Bangkok 10500, Thailand
| | - Krissanapong Manotham
- Renal Unit, Department of Medicine, Lerdsin General Hospital, Bangkok 10500, Thailand
| |
Collapse
|
33
|
Yu W, Zhang Y, Jiang C, He W, Yi Y, Wang J. Orthodontic treatment mediates dental pulp microenvironment via IL17A. Arch Oral Biol 2016; 66:22-9. [DOI: 10.1016/j.archoralbio.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023]
|
34
|
Viña-Almunia J, Borras C, Gambini J, El Alamy M, Peñarrocha M, Viña J. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells. Med Oral Patol Oral Cir Bucal 2016; 21:e374-9. [PMID: 26946201 PMCID: PMC4867212 DOI: 10.4317/medoral.20957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/27/2015] [Indexed: 01/09/2023] Open
Abstract
Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Results Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Conclusions Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents. Key words:Dental pulp stem cells, mesenchymal stem cells, isolation method.
Collapse
Affiliation(s)
- J Viña-Almunia
- Cirugía Bucal, Clínicas Odontológicas, Facultad de Medicina y Odontología, Universidad de Valencia, Gascó Oliag 1, E46021- Valencia, Spain,
| | | | | | | | | | | |
Collapse
|
35
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Dhillon H, Kaushik M, Sharma R. Regenerative endodontics--Creating new horizons. J Biomed Mater Res B Appl Biomater 2015; 104:676-85. [PMID: 26699211 DOI: 10.1002/jbm.b.33587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/05/2015] [Accepted: 11/18/2015] [Indexed: 12/28/2022]
Abstract
Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics.
Collapse
Affiliation(s)
- Harnoor Dhillon
- Department of Conservative Dentistry and Endodontics, Army College of Dental Sciences, Secunderabad, India
| | - Mamta Kaushik
- Department of Conservative Dentistry and Endodontics, Army College of Dental Sciences, Secunderabad, India
| | - Roshni Sharma
- Department of Conservative Dentistry and Endodontics, Army College of Dental Sciences, Secunderabad, India
| |
Collapse
|
37
|
Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther 2015; 6:162. [PMID: 26345292 PMCID: PMC4562193 DOI: 10.1186/s13287-015-0156-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy. Methods DPSCs isolated from the dental pulp of extracted incisors of Sprague–Dawley rats were partly frozen in a −80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation. Results Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs. Conclusions We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0156-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Maiko Omi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Yasuko Kobayashi
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Takahiro Tosaki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Norinaga Kojima
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Shogo Ozawa
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Yoshinobu Tanaka
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
38
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
39
|
Bhoj M, Zhang C, Green DW. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel. J Endod 2015; 41:1100-7. [PMID: 25958179 DOI: 10.1016/j.joen.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/15/2015] [Accepted: 03/08/2015] [Indexed: 01/17/2023]
Abstract
INTRODUCTION A living, self-supporting pulp tissue replacement in vitro and for transplantation is an attractive yet unmet bioengineering challenge. Our aim is to create 3-dimensional alginate-based microenvironments that replicate the shape of gutta-percha and comprise key elements for the proliferation of progenitor cells and the release of growth factors. METHODS An RGD-bearing alginate framework was used to encapsulate dental pulp stem cells and human umbilical vein endothelial cells in a ratio of 1:1. The alginate hydrogel also retained and delivered 2 key growth factors, vascular endothelial growth factor-121 and fibroblast growth factor, in a sufficient amount to induce proliferation. A method was then devised to replicate the shape of gutta-percha using RGD alginate within a custom-made mold of thermoresponsive N-isopropylacrylamide. Plugs of alginate containing different permutations of growth factor-based encapsulates were tested and evaluated for viability, proliferation, and release kinetics between 1 and 14 days. RESULTS According to scanning electron microscopic and confocal microscopic observations, the encapsulated human endothelial cells and dental pulp stem cell distribution were frequent and extensive throughout the length of the construct. There were also high levels of viability in all test environments. Furthermore, cell proliferation was higher in the growth factor-based groups. Growth factor release kinetics also showed significant differences between them. Interestingly, the combination of vascular endothelial growth factor and fibroblast growth factor synergize to significantly up-regulate cell proliferation. CONCLUSIONS RGD-alginate scaffolds can be fabricated into shapes to fill the pulp space by simple templating. The addition of dual growth factors to cocultures of stem cells within RGD-alginate scaffolds led to the creation of microenvironments that significantly enhance the proliferation of dental pulp stem cell/human umbilical vein endothelial cell combinations.
Collapse
Affiliation(s)
- Manasi Bhoj
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong Hospital, Sai Ying Pun, Hong Kong
| | - Chengfei Zhang
- Comprehensive Dental Care, Faculty of Dentistry, The University of Hong Kong Hospital, Sai Ying Pun, Hong Kong.
| | - David W Green
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong Hospital, Sai Ying Pun, Hong Kong.
| |
Collapse
|
40
|
Ju Y, Ge J, Ren X, Zhu X, Xue Z, Feng Y, Zhao S. Cav1.2 of L-type Calcium Channel Is a Key Factor for the Differentiation of Dental Pulp Stem Cells. J Endod 2015; 41:1048-55. [PMID: 25703215 DOI: 10.1016/j.joen.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/19/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION L-type calcium channel (LTCC) is a unique and important factor in several cell lineages, whereas its role in the differentiation of dental pulp stem cells (DPSCs) is not well-known. In this study, we examined the function of LTCC α1C subunit (Cav1.2) and its distal C-terminus (DCT) during the in vitro differentiation of rat DPSCs (rDPSCs). METHODS After fluorescence-activated cell sorting, rDPSCs were differentiated toward dentin sialophosphoprotein-positive odontoblasts and neural cells expressing specific neuronal markers. The inhibition of rDPSC differentiation via LTCC blocker nimodipine and Cav1.2 knockdown through short hairpin RNA was evaluated by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence staining. RESULTS Nimodipine treatment and Cav1.2 knockdown generated similar results. The number of positive calcium nodules and the protein and mRNA levels of dentin sialophosphoprotein were significantly reduced during odontogenic differentiation. The levels of microtubule-associated protein-2 and β-III-tubulin were reduced in neural differentiation. The expression of DCT decreased after odontogenic differentiation but significantly increased after neural differentiation (P < .05, n = 9). CONCLUSIONS Our data showed that LTCC blocker nimodipine inhibits the odontogenic and neural differentiation of rDPSCs, and Cav1.2 is responsible for the activity of LTCC. The expression of DCT of Cav1.2 significantly changes during both odontogenic and neural differentiation. Thus, Cav1.2 of LTCC plays an essential role in differentiation of DPSCs, which might be mediated through the regulation of DCT levels in DPSCs.
Collapse
Affiliation(s)
- Yanqin Ju
- Department of Conservative Dentistry, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People's Republic of China
| | - Jianping Ge
- Department of Conservative Dentistry, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People's Republic of China
| | - Xudong Ren
- Department of Regenerative Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xianmin Zhu
- Department of Regenerative Medicine, Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhigang Xue
- Department of Regenerative Medicine, Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yun Feng
- Department of Regenerative Medicine, Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shouliang Zhao
- Department of Conservative Dentistry, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People's Republic of China; Department of Stomatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
41
|
The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Sci Rep 2014; 4:7283. [PMID: 25471527 PMCID: PMC4255186 DOI: 10.1038/srep07283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs. Furthermore, immature teeth DPCs can be reprogrammed by OCT3/4 and SOX2, conversely these two factors are insufficient to convert mature teeth DPCs to pluripotent states. Using a gene expression profiles between these two DPC groups, we identified a new transcript factor, distal-less homeobox 4 (DLX4), which was highly expressed in immature teeth DPCs and significantly promoted human iPSC generation in combination with OCT3/4, SOX2, and KLF4. We further show that activation of TGF-β signaling suppresses the expression of DLX4 in DPCs and impairs the iPSC generation of DPCs. Our findings indicate that DLX4 can functionally replace c-MYC and supports efficient reprogramming of immature teeth DPCs.
Collapse
|
42
|
Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, Nör JE, Clarkson BH, Liu J. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res 2014; 93:1290-5. [PMID: 25139361 PMCID: PMC4462802 DOI: 10.1177/0022034514547914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 01/09/2023] Open
Abstract
In previous studies, fluorapatite (FA) crystal-coated surfaces have been shown to stimulate the differentiation and mineralization of human dental pulp stem cells (DPSCs) in two-dimensional cell culture. However, whether the FA surface can recapitulate these properties in three-dimensional culture is still unknown. This study examined the differences in behavior of human DPSCs cultured on electrospun polycaprolactone (PCL) NanoECM nanofibers with or without the FA crystals. Under near-physiologic conditions, the FA crystals were synthesized on the PCL nanofiber scaffolds. The FA crystals were evenly distributed on the scaffolds. DPSCs were cultured on the PCL+FA or the PCL scaffolds for up to 28 days. Scanning electron microscope images showed that DPSCs attached well to both scaffolds after the initial seeding. However, it appeared that more multicellular aggregates formed on the PCL+FA scaffolds. After 14 days, the cell proliferation on the PCL+FA was slower than that on the PCL-only scaffolds. Interestingly, even without any induction of mineralization, from day 7, the upregulation of several pro-osteogenic molecules (dmp1, dspp, runx2, ocn, spp1, col1a1) was detected in cells seeded on the PCL+FA scaffolds. A significant increase in alkaline phosphatase activity was also seen on FA-coated scaffolds compared with the PCL-only scaffolds at days 14 and 21. At the protein level, osteocalcin expression was induced only in the DPSCs on the PCL+FA surfaces at day 21 and then significantly enhanced at day 28. A similar pattern was observed in those specimens stained with Alizarin red and Von Kossa after 21 and 28 days. These data suggest that the incorporation of FA crystals within the three-dimensional PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human DPSCs. This FA-modified PCL nanofiber scaffold shows promising potential for future bone, dental, and orthopedic regenerative applications.
Collapse
Affiliation(s)
- T Guo
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Y Li
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xian, Shaanxi, China
| | - G Cao
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Z Zhang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - A Czajka-Jakubowska
- Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - B H Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Liu
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Today prospects for tissue engineering therapeutic approach in dentistry. ScientificWorldJournal 2014; 2014:151252. [PMID: 25379516 PMCID: PMC4212630 DOI: 10.1155/2014/151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/09/2014] [Indexed: 02/08/2023] Open
Abstract
In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.
Collapse
|
44
|
Ji J, Sun W, Wang W, Munyombwe T, Yang XB. The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model. Cell Tissue Res 2014; 358:123-33. [PMID: 24916612 DOI: 10.1007/s00441-014-1907-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1 × 10(7) hDPSCs were seeded into 1 ml 3% agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1 Hz, 3 × 30 min per day, n = 3). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1-3 weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption.
Collapse
Affiliation(s)
- Jun Ji
- Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol 2014; 59:559-67. [DOI: 10.1016/j.archoralbio.2014.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
|
46
|
|
47
|
Yabuuchi T, Yoshikawa M, Kakigi H, Hayashi H. Hybrid Scaffolds Composed of Amino-Acid Coated Sponge and Hydroxyapatite for Hard Tissue Formation by Bone Marrow Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.76034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Fournier BPJ, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev 2013; 22:3157-77. [PMID: 23944935 DOI: 10.1089/scd.2013.0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Postnatal connective tissues contain phenotypically heterogeneous cells populations that include distinct fibroblast subpopulations, pericytes, myofibroblasts, fibrocytes, and tissue-specific mesenchymal stem cells (MSCs). These cells play key roles in tissue development, maintenance, and repair and contribute to various pathologies. Depending on the origin of tissue, connective tissue cells, including MSCs, have different phenotypes. Understanding the identity and specific functions of these distinct tissue-specific cell populations may allow researchers to develop better treatment modalities for tissue regeneration and find novel approaches to prevent pathological conditions. Interestingly, MSCs from adult oral mucosal gingiva possess distinct characteristics, including neural crest origin, multipotent differentiation capacity, fetal-like phenotype, and potent immunomodulatory properties. These characteristics and an easy, relatively noninvasive access to gingival tissue, and fast tissue regeneration after tissue biopsy make gingiva an attractive target for cell isolation for therapeutic purposes aiming to promote tissue regeneration and fast, scar-free wound healing. The purpose of this review is to discuss the identity, phenotypical heterogeneity, and function of gingival MSCs and summarize what is currently known about their properties, role in scar-free healing, and their future therapeutic potential.
Collapse
Affiliation(s)
- Benjamin P J Fournier
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia , Vancouver, Canada
| | | | | |
Collapse
|
49
|
|
50
|
Osathanon T, Sawangmake C, Nowwarote N, Pavasant P. Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral Dis 2013; 20:352-8. [PMID: 23651465 DOI: 10.1111/odi.12119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE An investigation on neuronal differentiation capacity of human dental pulp stem cells (DPSCs) was still lacking. In this study, two different neuronal induction protocols were investigated and compared. METHODS The neuronal differentiation was induced using chemical or growth factor induction protocol. The differentiation was confirmed by the neurogenic mRNA and protein expression using polymerase chain reaction and immunocytochemistry, respectively. RESULTS Chemical-induced neuronal differentiation protocol promoted morphological change and β3-TUBULIN protein expression. Though, SOX2, SOX9, and β3-TUBULIN mRNA levels were not different compared with the control, indicating a defective differentiation. For growth factor induction protocol, the cells were exhibited neurite-like cellular process and positively stained with β3-TUBULIN. In addition, the increase in intracellular calcium was noted upon NMDA stimulation, implying the neuronal function. A dramatic increased mRNA expression of neurogenic markers [SOX2, SOX9, β3-TUBULIN, and gamma-aminobutyric acid (GABA receptors)] was noted as compared to the control. In addition, a remarkable increased expression of Notch signaling target gene, HEY1, was observed in growth factor-induced DPSCs derived neuronal-like cells compared with the control. CONCLUSION These data indicate that growth factor induction method is a preferable protocol for neuronal differentiation by DPSCs.
Collapse
Affiliation(s)
- T Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|