1
|
Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, Olopade JO. Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Front Immunol 2022; 13:795089. [PMID: 35707531 PMCID: PMC9190229 DOI: 10.3389/fimmu.2022.795089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Africa is laden with a youthful population, vast mineral resources and rich fauna. However, decades of unfortunate historical, sociocultural and leadership challenges make the continent a hotspot for poverty, indoor and outdoor pollutants with attendant stress factors such as violence, malnutrition, infectious outbreaks and psychological perturbations. The burden of these stressors initiate neuroinflammatory responses but the pattern and mechanisms of glial activation in these scenarios are yet to be properly elucidated. Africa is therefore most vulnerable to neurological stressors when placed against a backdrop of demographics that favor explosive childbearing, a vast population of unemployed youths making up a projected 42% of global youth population by 2030, repressive sociocultural policies towards women, poor access to healthcare, malnutrition, rapid urbanization, climate change and pollution. Early life stress, whether physical or psychological, induces neuroinflammatory response in developing nervous system and consequently leads to the emergence of mental health problems during adulthood. Brain inflammatory response is driven largely by inflammatory mediators released by glial cells; namely astrocytes and microglia. These inflammatory mediators alter the developmental trajectory of fetal and neonatal brain and results in long-lasting maladaptive behaviors and cognitive deficits. This review seeks to highlight the patterns and mechanisms of stressors such as poverty, developmental stress, environmental pollutions as well as malnutrition stress on astrocytes and microglia in neuroinflammation within the African context.
Collapse
Affiliation(s)
- Matthew Ayokunle Olude
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: Matthew Ayokunle Olude,
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Oluwaseun Ahmed Mustapha
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Cinthia Farina
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) San Raffaele Scientific Institute, Institute of Experimental Neurology (INSPE) and Division of Neuroscience, Milan, Italy
| | - Francisco Javier Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
3
|
Iqubal A, Ahmed M, Ahmad S, Sahoo CR, Iqubal MK, Haque SE. Environmental neurotoxic pollutants: review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41175-41198. [PMID: 32820440 DOI: 10.1007/s11356-020-10539-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/16/2020] [Indexed: 05/23/2023]
Abstract
Environmental pollutants are recognized as one of the major concerns for public health and responsible for various forms of neurological disorders. Some of the common sources of environmental pollutants related to neurotoxic manifestations are industrial waste, pesticides, automobile exhaust, laboratory waste, and burning of terrestrial waste. Among various environmental pollutants, particulate matter, ultrafine particulate matter, nanoparticles, and lipophilic vaporized toxicant (acrolein) easily cross the blood-brain barrier, activate innate immune responses in the astrocytes, microglia, and neurons, and exert neurotoxicity. Growing shreds of evidence from human epidemiological studies have correlated the environmental pollutants with neuroinflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, myelin sheath disruption, and alterations in the blood-brain barrier anatomy leading to cognitive dysfunction and poor quality of life. These environmental pollutants also considerably cause developmental neurotoxicity, exhibit teratogenic effect and mental growth retardance, and reduce IQ level. Until now, the exact mechanism of pollutant-induced neurotoxicity is not known, but studies have shown interference of pollutants with the endogenous antioxidant defense system, inflammatory pathway (Nrf2/NF-kB, MAPKs/PI3K, and Akt/GSK3β), modulation of neurotransmitters, and reduction in long-term potentiation. In the current review, various sources of pollutants and exposure to the human population, developmental neurotoxicity, and molecular mechanism of different pollutants involved in the pathogenesis of different neurological disorders have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Song C, Charli A, Luo J, Riaz Z, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mechanistic Interplay Between Autophagy and Apoptotic Signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: Relevance to the Adverse Outcome Pathway in Pesticide Neurotoxicity. Toxicol Sci 2020; 169:333-352. [PMID: 30796443 DOI: 10.1093/toxsci/kfz049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic exposure to pesticides is implicated in the etiopathogenesis of Parkinson's disease (PD). Previously, we showed that dieldrin induces dopaminergic neurotoxicity by activating a cascade of apoptotic signaling pathways in experimental models of PD. Here, we systematically investigated endosulfan's effect on the interplay between apoptosis and autophagy in dopaminergic neuronal cell models of PD. Exposing N27 dopaminergic neuronal cells to endosulfan rapidly induced autophagy, indicated by an increased number of autophagosomes and LC3-II accumulation. Prolonged endosulfan exposure (>9 h) triggered apoptotic signaling, including caspase-2 and -3 activation and protein kinase C delta (PKCδ) proteolytic activation, ultimately leading to cell death, thus demonstrating that autophagy precedes apoptosis during endosulfan neurotoxicity. Furthermore, inhibiting autophagy with wortmannin, a phosphoinositide 3-kinase inhibitor, potentiated endosulfan-induced apoptosis, suggesting that autophagy is an early protective response against endosulfan. Additionally, Beclin-1, a major regulator of autophagy, was cleaved during the initiation of apoptotic cell death, and the cleavage was predominantly mediated by caspase-2. Also, caspase-2 and caspase-3 inhibitors effectively blocked endosulfan-induced apoptotic cell death. CRISPR/Cas9-based stable knockdown of PKCδ significantly attenuated endosulfan-induced caspase-3 activation, indicating that the kinase serves as a regulatory switch for apoptosis. Additional studies in primary mesencephalic neuronal cultures confirmed endosulfan's effect on autophagy and neuronal degeneration. Collectively, our results demonstrate that a functional interplay between autophagy and apoptosis dictate pesticide-induced neurodegenerative processes in dopaminergic neuronal cells. Our study provides insight into cell death mechanisms in environmentally linked neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Adhithiya Charli
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Jie Luo
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Zainab Riaz
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
5
|
Da Cuña RH, Lo Nostro FL, Shimabukuro V, Ondarza PM, Miglioranza KSB. Bioaccumulation and Distribution Behavior of Endosulfan on a Cichlid Fish: Differences Between Exposure to the Active Ingredient and a Commercial Formulation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:604-611. [PMID: 31775175 DOI: 10.1002/etc.4643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants reach aquatic ecosystems during application and can bioconcentrate/biomagnify because of their lipophilic nature. Toxicological studies focus almost exclusively on the active ingredients of pesticides, instead of commercial formulations, whose toxicity can differ as a result of nonspecified ingredients. The intensive use of endosulfan as a wide-ranging insecticide over the last few decades makes it one of the most frequently detected contaminants in the aquatic environment, even after it has been restricted worldwide. The aim of the present study was to evaluate the bioaccumulation and organ distribution of waterborne endosulfan in the freshwater fish Cichlasoma dimerus, comparing the active ingredient and a commercial formulation. Males were exposed to 0.7 μg/L endosulfan for 2 wk, which was quantified (gas chromatography with an electron capture detector) in the liver, testes, gills, brain, and muscle. The results suggest rapid metabolism of α-endosulfan and β-endosulfan isomers to endosulfan sulfate (endosulfan-S) in tissues. Isomer levels were highest in gills, indicative of recent uptake. Levels of endosulfan-S were highest in liver and testes for the active ingredient and testes and brain for the commercial formulation. For the active ingredient, endosulfan-S levels showed a positive correlation with organ-lipid percentage. No correlation was evident for the commercial formulation, indicating that the presence of adjuvants alters endosulfan distribution because gills and liver showed a higher uptake and mobilization of β-endosulfan. These differences in organ distribution may alter tissue-specific toxicity; therefore, additives cannot be considered inactive even if nontoxic. Environ Toxicol Chem 2020;39:604-611. © 2019 SETAC.
Collapse
Affiliation(s)
- Rodrigo Hérnan Da Cuña
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabiana Laura Lo Nostro
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Shimabukuro
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
| | - Paola Mariana Ondarza
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
| | - Karina Silvia Beatriz Miglioranza
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
7
|
Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019; 138:343-362. [PMID: 31197504 PMCID: PMC6826260 DOI: 10.1007/s00401-019-02033-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Pesticides are unique environmental contaminants that are specifically introduced into the environment to control pests, often by killing them. Although pesticide application serves many important purposes, including protection against crop loss and against vector-borne diseases, there are significant concerns over the potential toxic effects of pesticides to non-target organisms, including humans. In many cases, the molecular target of a pesticide is shared by non-target species, leading to the potential for untoward effects. Here, we review the history of pesticide usage and the neurotoxicity of selected classes of pesticides, including insecticides, herbicides, and fungicides, to humans and experimental animals. Specific emphasis is given to linkages between exposure to pesticides and risk of neurological disease and dysfunction in humans coupled with mechanistic findings in humans and animal models. Finally, we discuss emerging techniques and strategies to improve translation from animal models to humans.
Collapse
Affiliation(s)
- Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| | - Vanessa Fitsanakis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences and Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Bonakdar M, Graybill PM, Davalos RV. A microfluidic model of the blood-brain barrier to study permeabilization by pulsed electric fields. RSC Adv 2017; 7:42811-42818. [PMID: 29308191 PMCID: PMC5753766 DOI: 10.1039/c7ra07603g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pulsed electric fields interact with the blood-brain barrier (BBB) and have been shown to increase the BBB permeability under some pulsing regimes. Pulsed electric fields may enhance drug delivery to the brain by disrupting the integrity of the BBB and allowing otherwise impermeable drugs to reach target areas. Microfluidic, in vitro models offer an alternative platform for exploring the impact of pulsed electric fields on the BBB because they create physiologically relevant microenvironments and eliminate the confounding variables of animal studies. We developed a microfluidic platform for real-time measurement of BBB permeability pre- and post-treatment with pulsed electric fields. Permeability is measured optically by the diffusion of fluorescent tracers across a monolayer of human cerebral microcapillary endothelial cells (hCMECs) cultured on a permeable membrane. We found that this device is able to capture real-time permeability of hCMEC monolayers for both reversible and irreversible electroporation pulsing regimes. Furthermore, preliminary testing of deep brain stimulation pulsing regimes reveals possible impacts on BBB integrity. This device will enable future studies of pulsed electric field regimes for improved understanding of BBB permeabilization.
Collapse
Affiliation(s)
- M. Bonakdar
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P. M. Graybill
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - R. V. Davalos
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Wei J, Zhang L, Ren L, Zhang J, Liu J, Duan J, Yu Y, Li Y, Peng C, Zhou X, Sun Z. Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage response signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:97-106. [PMID: 28273598 DOI: 10.1016/j.scitotenv.2017.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Our previous study showed that endosulfan increases the risk of cardiovascular disease. To identify toxic mechanism of endosulfan, we conducted an animal study for which 32 male Wistar rats were randomly and equally divided into four groups: Control group (corn oil only) and three treatment groups (1, 5 and 10mgkg-1·d-1). The results showed that exposure to endosulfan resulted in injury of cardiac tissue with impaired mitochondria integrity and elevated 8-OHdG expression in myocardial cells. Moreover, endosulfan increased the expressions of Fas, FasL, Caspase-8, Cleaved Caspase-8, Caspase-3 and Cleaved Caspase-3 in cardiac tissue. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of endosulfan (1, 6 and 12μgmL-1) for 24h. An inhibitor for Ataxia Telangiectasia Mutated Protein (ATM) (Ku-55933, 10μM) was added in 12μgmL-1 group for 2h before exposure to endosulfan. Results showed that endosulfan induced DNA damage and activated DNA damage response signaling pathway (ATM/Chk2 and ATR/Chk1) and consequent cell cycle checkpoint. Furthermore, endosulfan promoted the cell apoptosis through death receptor pathway resulting from oxidative stress. The results provide a new insight for mechanism of endosulfan-induced cardiovascular toxicity which will be helpful in future prevention of cardiovascular diseases induced by endosulfan.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Xu D, Li S, Lin L, Qi F, Hang X, Sun Y. Gene expression profiling to identify the toxicities and potentially relevant disease outcomes due to endosulfan exposure. Toxicol Res (Camb) 2016; 5:621-632. [PMID: 30090376 PMCID: PMC6062354 DOI: 10.1039/c5tx00332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Endosulfan, one of the most toxic organochlorine pesticides, belongs to a group of persistent organic pollutants. Gene expression profiling offers a promising approach in health hazard identification of chemicals. The aim of this study was to use gene expression profiling to identify the toxicities and potentially relevant human diseases due to endosulfan exposure. We performed DNA microarray analysis to analyze gene expression profiles in human endothelial cells exposed to 20, 40 and 60 μM endosulfan in combination with an endothelial phenotype. Microarray results showed that endosulfan increased the number of altered genes in a dose-dependent manner, and changed the expression of 161 genes across all treatment groups. qRT-PCR closely matched the microarray data for the genes tested. Significantly enriched biological processes for overlapping down-regulated genes include the neurological system process, signal transduction, and homeostatic process in all the dose groups. These down-regulated genes were associated with cytoskeleton organization and DNA repair at low doses, and involved in cell cycle, apoptosis, p53 pathway and carcinogenesis at high doses. Those up-regulated genes were linked to the inflammatory response and transcriptional misregulation in cancer at higher doses. These findings are consistent with our established endothelial phenotypes. Endosulfan may be relevant to human diseases including liver cancer, prostate cancer and leukemia using the NextBio Human Disease Atlas. These results provide molecular evidence supporting the toxicities and carcinogenic potential of endosulfan in humans.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Shuai Li
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Limei Lin
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Fei Qi
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Xiaoming Hang
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Yeqing Sun
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| |
Collapse
|
11
|
Goswami P, Gupta S, Joshi N, Sharma S, Singh S. Astrocyte activation and neurotoxicity: A study in different rat brain regions and in rat C6 astroglial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:122-139. [PMID: 26113375 DOI: 10.1016/j.etap.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The present study was conducted to investigate the effect of rotenone on astrocytes activation, their viability and its effect on neuronal death in different brain regions. Rotenone was injected in rat brain by intracerebroventricularly (bilateral) route at dose of 6 μg and 12 μg. In vitro C6 cells were treated with rotenone at concentration of 0.1, 0.25, 0.5, 1 and 2 μM. Rotenone administration to rat brain caused significant astrocytes activation in frontal cortex, cerebellum, cerebellar nucleus, substantia nigra, hypothalamus and hippocampus regions of the rat brain. Rotenone administration also led to significant degeneration of cells in all the studied regions along with altered nuclear morphology assessed by hematoxylin-eosin and cresyl violet staining. Histological staining showed the significantly decreased number of cells in all the studied regions except cerebellar nucleus in dose and time dependant manner. Rotenone administration in the rat brain also caused significant decrease in glutathione levels and augmented nitrite levels. In vitro treatment of rotenone to astrocytic C6 cells caused significantly increased expression of glial fibrillar acidic protein (GFAP) and decreased viability in dose and time dependent manner. Rotenone treatment to C6 cells exhibited significant generation of reactive oxygen species, augmented nitrite level, impaired mitochondrial activity, apoptotic chromatin condensation and DNA damage in comparison to control cells. Findings showed that oxidative stress play a considerable role in rotenone induced astrocyte death that was attenuated with co-treatment of antioxidant melatonin. In conclusion, results showed that rotenone caused significant astrocytes activation, altered nuclear morphology, biochemical alteration and apoptotic cell death in different rat brain regions. In vitro observations in C6 cells showed that rotenone treatment exhibited oxidative stress mediated apoptotic cell death, which was attenuated with co treatment of melatonin.
Collapse
Affiliation(s)
- Poonam Goswami
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Sonam Gupta
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Neeraj Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Sharad Sharma
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India
| | - Sarika Singh
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), India.
| |
Collapse
|
12
|
Peyre L, Zucchini-Pascal N, de Sousa G, Rahmani R. Effects of endosulfan on hepatoma cell adhesion: Epithelial–mesenchymal transition and anoikis resistance. Toxicology 2012; 300:19-30. [DOI: 10.1016/j.tox.2012.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 12/12/2022]
|
13
|
Ahmed T, Pathak R, Mustafa MD, Kar R, Tripathi AK, Ahmed RS, Banerjee BD. Ameliorating effect of N-acetylcysteine and curcumin on pesticide-induced oxidative DNA damage in human peripheral blood mononuclear cells. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:293-299. [PMID: 21049288 DOI: 10.1007/s10661-010-1736-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
Endosulfan, malathion, and phosphamidon are widely used pesticides. Subchronic exposure to these contaminants commonly affects the central nervous system, immune, gastrointestinal, renal, and reproductive system. There effects have been attributed to increased oxidative stress. This study was conducted to examine the role of oxidative stress in genotoxicity following pesticide exposure using peripheral blood mononuclear cells (PBMC) in vitro. Further possible attenuation of genotoxicity was studied using N-acetylcysteine (NAC) and curcumin as known modulators of oxidative stress. Cultured mononuclear cells was isolated from peripheral blood of healthy volunteers, and exposed to varying concentrations of different pesticides: endosulfan, malathion, and phosphamidon for 6, 12, and 24 h. Lipid peroxidation was assessed by cellular malondialdehyde (MDA) level and DNA damage was quantified by measuring 8-hydroxy-2'-deoxyguanosine (8-OH-dG) using ELISA. Both MDA and 8-OH-dG were significantly increased in a dose-dependent manner following treatment with these pesticides. There was a significant decrease in MDA and 8-OH-dG levels in PBMC when co-treated with NAC or/and curcumin as compared to pesticide alone. These results indicate that pesticide-induced oxidative stress is probably responsible for the DNA damage, and NAC or curcumin attenuate this effect by counteracting the oxidative stress.
Collapse
Affiliation(s)
- Tanzeel Ahmed
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110 095, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Ballesteros ML, Gonzalez M, Wunderlin DA, Bistoni MA, Miglioranza KSB. Uptake, tissue distribution and metabolism of the insecticide endosulfan in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1709-1714. [PMID: 21420767 DOI: 10.1016/j.envpol.2011.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L⁻¹). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L⁻¹ but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.
Collapse
Affiliation(s)
- M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Cátedra Diversidad Animal II, Av. Vélez Sársfield 299, 5000 Córdoba, Argentina.
| | | | | | | | | |
Collapse
|