1
|
Chen S, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136295. [PMID: 39471609 DOI: 10.1016/j.jhazmat.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
Collapse
Affiliation(s)
- Shuo Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Chen S, Li S, Li H, Du M, Ben S, Zheng R, Zhang Z, Wang M. Effect of polycyclic aromatic hydrocarbons on cancer risk causally mediated via vitamin D levels. ENVIRONMENTAL TOXICOLOGY 2023; 38:2111-2120. [PMID: 37209380 DOI: 10.1002/tox.23835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely exist in environmental substrates and are closely related to individual circulating vitamin D levels and tumorigenesis. Therefore, we proposed to evaluate the relationship between PAH exposure, vitamin D, and the risks for 14 cancer types via a causal inference framework underlying the mediation analysis. We evaluated seven urine monohydroxylated PAH (OH-PAH) and serum vitamin D concentrations of 3306 participants from the National Health and Nutrition Examination Survey between the 2013 and 2016 survey cycles and measured PAH concentrations in 150 subjects from the Nanjing cohort. We observed a significant negative dose-response relationship between increased OH-PAH levels and vitamin D deficiency. Each unit increase in ∑OH-PAHs could lead to a decrease in vitamin D levels (βadj = -0.98, Padj = 2.05 × 10-4 ). Body mass index could have interaction effects with ∑OH-PAHs and affect vitamin D levels. Coexposure to naphthalene and fluorene metabolites mutually affected vitamin D levels. Notably, vitamin D could causally mediate the relationship between OH-PAHs and nine types of cancer (e.g., colorectal cancer, liver cancers, etc.). This study first emphasizes the causal cascade of individual OH-PAHs, vitamin D, and cancer risk, providing insights into prevention via the environment.
Collapse
Affiliation(s)
- Silu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Jia Y, Yang H, Yu J, Li Z, Jia G, Ding B, Lv C. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988377 DOI: 10.1002/tox.23789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Crocin has been reported to have antitumor activity in several tumors including breast cancer. Nevertheless, the mechanism of action of crocin on breast cancer remains unclear. The cytotoxicity of crocin was evaluated by CCK-8 assay. Cell proliferation was assessed using EdU incorporation assay and western blot analysis. Breast cancer-related genes were extracted from GEPIA. miR-122-5p targets were predicted using Targetscan, starbase, and miRDB softwares. Luciferase reporter assay was employed to confirm whether miR-122-5p targeted sprouty2 (SPRY2) and forkhead box P2 (FOXP2). Results showed that crocin exhibited cytotoxicity and suppressed the proliferation in breast cancer cells. miR-122-5p was upregulated in breast cancer tissues and cells. Crocin suppressed miR-122-5p to block the proliferation of breast cancer cells. Seven targets of miR-122-5p were identified in breast cancer. SPRY2 and FOXP2 were selected for further experiments due to their involvement in breast cancer. miR-122-5p targeted SPRY2 and FOXP2 to inhibit their expression. miR-122-5p knockdown restrained breast cancer cell proliferation by targeting SPRY2 and FOXP2. Additionally, crocin increased SPRY2 and FOXP2 expression by inhibiting miR-122-5p expression. Together, our results suggested that crocin inhibited proliferation of breast cancer cells through decreasing miR-122-5p expression and the subsequent increase of SPRY2 and FOXP2 expression.
Collapse
Affiliation(s)
- Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
4
|
Zhao C, Li A, Zhang G, Pan Y, Meng L, Yang R, Li Y, Zhang Q, Jiang G. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12431-12439. [PMID: 36001868 DOI: 10.1021/acs.est.2c03099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Workers in coal-fired power plants are at a high risk of exposure to polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs), yet no studies have investigated such exposure of HPAHs. In this study, 12 PAHs and 8 chlorinated PAHs, but no brominated PAHs, were detected in >80% of serum samples from workers of a coal-fired power plant in eastern China. Serum HPAH concentrations were higher in plant workers (16-273 ng/g lipid) than in people without occupational exposure (12-51 ng/g lipid), and serum PAH and HPAH concentrations both in male and female workers were positively correlated with the occupational exposure duration, with an estimated doubling time of 11-17 years. Correlations were found between concentrations of ∑8HPAHs and ∑12PAHs but not between 7-chlorobenz[a]anthracene (7-ClBaA) and 1-chloropyrene (1-ClPyr) and their respective parent PAHs. In males, total concentrations of PAHs and HPAHs were positively correlated with pulmonary hypofunction and hypertension but not with abnormal electrocardiogram. The benzo[a]pyrene equivalents ratio of ∑8HPAHs/∑12PAHs was 0.3 ± 0.1. Among the HPAHs in the serum, 9-chlorophenanthrene, 7-ClBaA, and 1-ClPyr showed high health risks. This study is the first report on HPAH exposure in coal-fired power plant workers and provides new evidence on the health risks of PAHs and HPAHs in humans.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yiyao Pan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang P, Jin B, Lian C, Guo K, Ma C. Comparative Analysis of Polycyclic Aromatic Hydrocarbons and Halogenated Polycyclic Aromatic Hydrocarbons in Different Parts of Perilla frutescens (L.) Britt. Molecules 2022; 27:3133. [PMID: 35630612 PMCID: PMC9145503 DOI: 10.3390/molecules27103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Perilla frutescens (L.) Britt., a medicinal herb and edible plant, is very popular among East Asian countries. The perilla leaves, stems and seeds can be used as traditional medicines and foods. Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) are organic pollutants that are widely present in the environment, such as in water, air and soil, and are harmful to humans. In this study, the contents of 16 PAHs and 4 HPAHs in perilla leaves, stems and seeds were determined by gas chromatography tandem mass spectrometry (GC-MS). A total of 12 PAHs were detected in all samples, and no HPAHs were detected. The total contents of PAHs in perilla leaves, stems and seeds varied from 41.93 to 415.60 ng/g, 7.02 to 51.52 ng/g and 15.24 to 180.00 ng/g, respectively. The statistical analyses showed that there were significant differences in the distribution of PAHs in perilla leaves, stems and seeds. On the basis of the toxic equivalent quantity (TEQ) and incremental lifetime cancer risk (ILCR) model, the cancer risks of the intake of perilla leaves, stems and seeds were assessed to be from 3.30 × 10-8 to 2.11 × 10-5, 5.52 × 10-9 to 5.50 × 10-8 and 1.20 × 10-8 to 1.41 × 10-7, respectively. These were lower than 10-4 (the priority risk level of the EPA) and suggested that there may be almost no cancer risk from the intake of these traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
- Pengfei Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (P.W.); (B.J.); (K.G.)
| | - Bo Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (P.W.); (B.J.); (K.G.)
| | - Chaojie Lian
- National Institutes for Food and Drug Control, Beijing 102627, China;
| | - Kaijing Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (P.W.); (B.J.); (K.G.)
| | - Chen Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (P.W.); (B.J.); (K.G.)
| |
Collapse
|
6
|
Wang YJ, Liao RQ, Liu WL, Kannan K, Ohura T, Wu MH, Ma J. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16241-16252. [PMID: 28540547 DOI: 10.1007/s11356-017-9193-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with three to five aromatic rings have been documented to ubiquitously occur in environmental matrices. In this study, residual concentrations and profiles of 20 individual ClPAHs were determined in 35 surface sediment samples from Maowei Sea, a semi-enclosed shallow inland bay located in the northwestern part of South China Sea. The concentrations of ΣClPAHs in sediment ranged from 313 to 9650 pg/g dw with a detection rate of 43-100%. Of the individual ClPAH congeners, 9-ClPhe was the most abundant in Maowei Sea with the concentrations that ranged from 99.9 to 3610 pg/g dw (mean 1120 pg/g dw). High-molecular-weight ClPAH congeners (four to five rings) were predominant in sediments from sampling locations near a petrochemical industrial complex, whereas low-molecular-weight ClPAH congeners (three rings) were predominant in sediments from estuarine and mangrove locations. A positive matrix factorization (PMF) model in combination with dioxin-like toxic equivalency quotient (TEQ) results was used to apportion sources of ClPAHs. Vehicular emission, combustion/chemical industrial processes, and two other unknown sources accounted for 40.1, 25.5, 20.8, and 13.6%, respectively, of ClPAH sources in sediment; their contribution to TEQs in sediments were 24.2, 40.5, 19.3, and 16.0%, respectively. Further investigations are needed to elucidate potential sources and ecological risks of ClPAHs in sediments.
Collapse
Affiliation(s)
- Yu-Jie Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai, 200433, China
| | - Ri-Quan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, Guangxi, 535000, China
| | - Wen-Long Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, USA.
| | - Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Tempaku, Nagoya, 468-8502, Japan
| | - Ming-Hong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai, 200433, China.
| |
Collapse
|
7
|
Sévère S, Marchand P, Guiffard I, Morio F, Venisseau A, Veyrand B, Le Bizec B, Antignac JP, Abadie J. Pollutants in pet dogs: a model for environmental links to breast cancer. SPRINGERPLUS 2015; 4:27. [PMID: 25646150 PMCID: PMC4310831 DOI: 10.1186/s40064-015-0790-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 12/04/2022]
Abstract
Purpose Invasive breast carcinoma is the most common cancer in women as in non-ovariectomised pet dogs, which are already identified as a valuable spontaneous preclinical model for that disease. Geographical and time trends suggest that environmental factors may play an important role in the etiology and pathogenesis of breast cancer. Persistent organic pollutants (POPs) fit perfectly with these trends and are known to interact with hormonal receptors implicated in breast cancer subtyping. The aim of this innovating study was to evaluate the interest of the companion dog model in assessing chemical exposure and breast cancer associations, in order to identify common etiological features with the human disease in a context of comparative oncology. Methods We monitored a hundred of molecules belonging to a large panel of POPs (dioxins, dioxin-like and non dioxin-like polychlorobisphenyls, organochlorine pesticides, brominated flame retardants, perfluorinated alkylated substances) in companion dogs diagnosed for mammary adenocarcinoma (n = 54) and non cancer controls (n = 47). Results All targeted chemical families were able to be detected in canine samples. We identified pollutants associated with mammary cancer belonging to the dioxin like-PCB family (notably PCB-118, -156, -105, -114) that were already pointed out in human epidemiological studies on breast cancer, and that fit with the fundamental role of the Aryl Hydrocarbon Receptor in the promotion of breast cancer. Conclusions Similarities observed in the spontaneous dog model are very helpful to progress in interpretation of human breast cancer-environment relationships. This study provides a new insight focusing on this discrete but recurrent signature.
Collapse
Affiliation(s)
- Sabine Sévère
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Philippe Marchand
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Ingrid Guiffard
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Floriane Morio
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), Animaux Modèles pour la Recherche en Oncologie Comparée (AMaROC), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Anaïs Venisseau
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Bruno Veyrand
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Bruno Le Bizec
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Jean-Philippe Antignac
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), USC 1329 INRA Laboratoire d'Etude des résidus et Contaminants dans les Aliments (LABERCA), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| | - Jérôme Abadie
- LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), Animaux Modèles pour la Recherche en Oncologie Comparée (AMaROC), Site de la Chantrerie - CS50707, 44307 Nantes cedex 3, France
| |
Collapse
|
8
|
Endocrine-disrupting chemicals: associated disorders and mechanisms of action. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:713696. [PMID: 22991565 PMCID: PMC3443608 DOI: 10.1155/2012/713696] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/21/2022]
Abstract
The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.
Collapse
|
9
|
Brooks J, Eltom SE. Malignant transformation of mammary epithelial cells by ectopic overexpression of the aryl hydrocarbon receptor. Curr Cancer Drug Targets 2011; 11:654-69. [PMID: 21486221 DOI: 10.2174/156800911795655967] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand activated basic helix-loop-helix transcription factor that binds to environmental poly aromatic hydrocarbons (PAH) and mediates their toxic and carcinogenic responses. There is ample documentation for the role of AhR in PAH-induced carcinogenicity. However, in this report we addressed whether overexpression of AhR alone is sufficient to induce carcinogenic transformation in human mammary epithelial cells (HMEC). Retroviral expression vectors were used to develop a series of stable cell lines expressing varying levels of AhR protein in an immortalized normal HMEC with relatively low endogenous AhR expression. The resulting increase in AhR expression and activity correlated with the development of cellular malignant phenotypes, most significantly epithelial-to-mesenchymal transition. Clones overexpressing AhR by more than 3-fold, exhibited a 50% decrease in population doubling time. Cell cycle analysis revealed that this increase in proliferation rates was due to an enhanced cell cycle progression by increasing the percentage of cells transiting into S- and G2/M phases. Cells overexpressing AhR exhibited enhanced motility and migration. Importantly, these cells acquired the ability to invade matrigel matrix, where more than 80% of plated cells invaded the matrigel matrix within 24 h, whereas none of parental or the vector control HMEC were able to invade matrigel. Collectively, these data provide evidence for a direct role of AhR in the progression of breast carcinoma. The results suggest a novel therapeutic target that could be considered for treatment and prevention of breast cancer progression.
Collapse
Affiliation(s)
- J Brooks
- Graduate Program in Pharmacology, Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | |
Collapse
|
10
|
Takemura H, Uchiyama H, Ohura T, Sakakibara H, Kuruto R, Amagai T, Shimoi K. A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2010; 118:70-6. [PMID: 19833205 DOI: 10.1016/j.jsbmb.2009.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 11/26/2022]
Abstract
A 17beta-estradiol (E(2)) is hydrolyzed to 2-hydroxy-E(2) (2-OHE(2)) and 4-hydroxy-E(2) (4-OHE(2)) via cytochrome P450 (CYP) 1A1 and 1B1, respectively. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE(2) is predominantly formed in cancerous tissues. In this study, we investigated the inhibitory effects of chrysoeriol (luteorin-3'-methoxy ether), which is a natural methoxyflavonoid, against activity of CYP1A1 and 1B1 using in vitro and cultured cell techniques. Chrysoeriol selectively inhibited human recombinant CYP1B1-mediated 7-ethoxyresorufin-O-deethylation (EROD) activity 5-fold more than that of CYP1A1-mediated activity in a competitive manner. Additionally, chrysoeriol inhibited E(2) hydroxylation was catalyzed by CYP1B1, but not by CYP1A1. Methylation of 4-OHE(2), which is thought to be a detoxification process, was not affected by the presence of chrysoeriol. In human breast cancer MCF-7 cells, chrysoeriol did not affect the gene expression of CYP1A1 and 1B1, but significantly inhibited the formation of 4-methoxy E(2) without any effects on the formation of 2-methoxy E(2). In conclusion, we present the first report to show that chrysoeriol is a chemopreventive natural ingredient that can selectively inhibit CYP1B1 activity and prevent the formation of carcinogenic 4-OHE(2) from E(2.).
Collapse
Affiliation(s)
- Hitomi Takemura
- Institute for Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|