1
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
The Butterfly Effect: Mild Soil Pollution with Heavy Metals Elicits Major Biological Consequences in Cobalt-Sensitized Broad Bean Model Plants. Antioxidants (Basel) 2022; 11:antiox11040793. [PMID: 35453478 PMCID: PMC9028058 DOI: 10.3390/antiox11040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Among the heavy metals (HMs), only cobalt induces a polymorphic response in Vicia faba plants, manifesting as chlorophyll morphoses and a ‘break-through’ effect resulting in the elevated accumulation of other HMs, which makes Co-pretreated broad bean plants an attractive model for investigating soil pollution by HMs. In this study, Co-sensitized V. faba plants were used to evaluate the long-term effect of residual industrial pollution by examining biochemical (H2O2, ascorbic acid, malondialdehyde, free proline, flavonoid, polyphenols, chlorophylls, carotenoids, superoxide dismutase) and molecular (conserved DNA-derived polymorphism and transcript-derived polymorphic fragments) markers after long-term exposure. HM-polluted soil induced a significantly higher frequency of chlorophyll morphoses and lower levels of nonenzymatic antioxidants in Co-pretreated V. faba plants. Both molecular markers effectively differentiated plants from polluted and control soils into distinct clusters, showing that HMs in mildly polluted soil are capable of inducing changes in DNA coding regions. These findings illustrate that strong background abiotic stressors (pretreatment with Co) can aid investigations of mild stressors (slight levels of soil pollution) by complementing each other in antioxidant content reduction and induction of DNA changes.
Collapse
|
3
|
Bicho RC, Scott-Fordsmand JJ, Amorim MJB. Multigenerational Exposure to WCCo Nanomaterials-Epigenetics in the Soil Invertebrate Enchytraeus crypticus. NANOMATERIALS 2020; 10:nano10050836. [PMID: 32349361 PMCID: PMC7711902 DOI: 10.3390/nano10050836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
It has become clear how important it is to assess longer term effects of (nano) materials in the environment given the current evidence showing how epigenetics drives response mechanisms. Here we studied global DNA methylation in standard soil invertebrate Enchytraeus crypticus over 224 days when exposed to nanostructured tungsten carbide cobalt (WCCo nanomaterials (NMs)) and to cobalt (CoCl2) in a multigenerational experiment. In order to assess the transgenerational effect, we used a multigenerational (MG) test design consisting of four generations in spiked soil followed by two generations in clean soil. Results showed that MG exposure to WCCo NMs caused global DNA methylation to increase, which continued in unexposed generations and was associated with an increase in reproduction (phenotypic effect). In general, WCCo NMs caused more (and more consistent) methylation than CoCl2.
Collapse
Affiliation(s)
- Rita C. Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | | | - Mónica J. B. Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-247-093
| |
Collapse
|
4
|
Pandey G, Sharma N, Sahu PP, Prasad M. Chromatin-Based Epigenetic Regulation of Plant Abiotic Stress Response. Curr Genomics 2016; 17:490-498. [PMID: 28217005 PMCID: PMC5282600 DOI: 10.2174/1389202917666160520103914] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Plants are continuously exposed to various abiotic and biotic factors limiting their growth and reproduction. In response, they need various sophisticated ways to adapt to adverse environmental conditions without compromising their proper development, reproductive success and eventually survival. This requires an intricate network to regulate gene expression at transcriptional and post-transcriptional levels, including epigenetic switches. Changes in chromatin modifications such as DNA and histone methylation have been observed in plants upon exposure to several abiotic stresses. In the present review, we highlight the changes of DNA methylation in diverse plants in response to several abiotic stresses such as salinity, drought, cold and heat. We also discuss the progresses made in understanding how these DNA methylation changes might contribute to the abiotic stress tolerance.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India,Address correspondence to this author at the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India; Tel: 91-11-26735160; Fax: 91-11-26741658; 26741146;, E-mails: ,
| |
Collapse
|
5
|
Paredes-Páliz KI, Pajuelo E, Doukkali B, Caviedes MÁ, Rodríguez-Llorente ID, Mateos-Naranjo E. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas. MARINE POLLUTION BULLETIN 2016; 110:396-400. [PMID: 27315751 DOI: 10.1016/j.marpolbul.2016.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination.
Collapse
Affiliation(s)
- Karina I Paredes-Páliz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Bouchra Doukkali
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Miguel Ángel Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41012 Sevilla, Spain.
| |
Collapse
|
6
|
Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3361-82. [PMID: 25408077 DOI: 10.1007/s11356-014-3849-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/10/2014] [Indexed: 05/20/2023]
Abstract
Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li Z, Chen X, Li S, Wang Z. Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Čėsnienė T, Kleizaitė V, Rančelis V, Žvingila D, Švabauskas K, Taraškevičius R. Use of Tradescantia clone 4430 for direct long-term soil mutagenicity studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 768:23-32. [DOI: 10.1016/j.mrgentox.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/18/2013] [Accepted: 12/28/2013] [Indexed: 11/28/2022]
|
9
|
Abstract
With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress.
Collapse
Affiliation(s)
- Sunil Kumar Sethy
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
10
|
Clonal structure and reduced diversity of the invasive alien plant Erigeron annuus in Lithuania. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe alien species Erigeron annuus (L.) Pers. is in an intensive spreading phase in Lithuania. Random amplified polymorphic DNA (RAPDs) and inter-simple sequence repeats (ISSRs) assays were used to study the genetic structure of old and new invasive populations and to determine the most spread genotypes of this species in Lithuania. Pairwise genetic distances between populations established using RAPD and ISSR markers significantly correlated (r=0.91, P<0.05). Our study indicates that there are two genetically different types of E. annuus populations. The first type is represented by a widely spread main clone and related monomorphic populations. The second type is represented by polymorphic populations, some of them present at sites where E. annuus has not been previously observed. Main clone predominates in nine populations and is from the region where this species was first described in natural ecosystems of Lithuania. UPGMA cluster analysis revealed genetic relationships between the main clone and accessions from old cemeteries where E. annuus has been grown as an ornamental plant. We found high genetic differentiation among populations (G
ST=0.58 for RAPDs, G
ST=0.64 for ISSRs). Taken together, our results will contribute to the monitoring of E. annuus spread in Lithuania.
Collapse
|