1
|
Gomes DF, Brito HP, do Vale JG, da Silva Pinto TJ, Moreira RA, Rocha O. Toxicity of isolated and mixed metals to a native Amazonian ostracod and ecological risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1074-1085. [PMID: 39215898 DOI: 10.1007/s10646-024-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO4; ZnCl2; CdCl2 and HgCl2). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.
Collapse
Affiliation(s)
- Diego Ferreira Gomes
- LEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.
| | - Hevelyn Plácido Brito
- Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| | - Julia Gomes do Vale
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| | - Thandy Júnior da Silva Pinto
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, S/n - Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Raquel Aparecida Moreira
- Department of Basic Sciences (ZAB), Faculty of Animal Science and Food Engineering (FZEA) at the University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Wang X, Zhang P, Wu M, He T, Li C, Liu L, Li S, Chang Z, Lang D, Du W, Li H, Pan B. The dual effect of disodium anthraquinone-2,6-disulfonate (AQDS) on the Cr(VI) removal by biochar: The enhanced electron transfer and the inhibited adsorption. CHEMOSPHERE 2023; 343:140245. [PMID: 37739129 DOI: 10.1016/j.chemosphere.2023.140245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Due to large specific surface area, abundant surface functional groups, and stable chemical structure, biochar has been widely used in many environmental fields, including the remediation of Cr pollution. Alternatively, electrochemically active organic matter (e-OM), which is prevalent in both natural environments and industrial wastewater, exerts an inevitable influence on the mechanisms underlying Cr(VI) removal by biochar. The synergistic interplay between biochar and e-OM in the context of Cr(VI) remediation remains to be fully elucidated. In this study, disodium anthraquinone-2,6-disulfonate (AQDS) was used as a model for e-OM, characterized by its quinone group's ability to either donate or accept electrons. We found that AQDS sped up the Cr(VI) removal process, but the enhancement effect decreased with the increase in pyrolysis temperature. With the addition of AQDS, the removal amount of Cr(VI) by BC300 and BC600 increased by 160.0% and 49.5%, respectively. AQDS could release more electrons trapped in the lower temperature biochar samples (BC300 and BC600) for Cr(VI) reduction. However, AQDS inhibited the Cr(VI) removal by BC900 due to the adsorption of AQDS on biochar surface. In the presence of the small molecule carbon source lactate, more AQDS was adsorbed onto the biochar surface. This led to an inhibition of the electron transfer between biochar and Cr(VI), resulting in an inhibitory effect. This study has elucidated the electron transfer mechanism involved in the removal of Cr(VI) by biochar, particularly in conjunction with e-OM. Furthermore, it would augment the efficacy of biochar in applications targeting the removal of heavy metals.
Collapse
Affiliation(s)
- Xue Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Meixuan Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Ting He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Can Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Lijuan Liu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Shunling Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| |
Collapse
|
3
|
Gomes DF, da Silva Pinto TJ, Raymundo LB, da Fontoura Sperandei V, Daam M, Moreira RA, Rocha O. Ecological risk assessment for metals in sediment and waters from the Brazilian Amazon region. CHEMOSPHERE 2023; 345:140413. [PMID: 37844699 DOI: 10.1016/j.chemosphere.2023.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Pollution by metals is a matter of concern around the world. In recent decades, the high population growth in urban centers has significantly magnified the entry of these pollutants into aquatic ecosystems. The Amazon region, intense migratory flow, gold mining, and industrialization have been considered the main driving forces for increasing metal pollution. Thus, the main aim of this study is to conduct, for the first time, an Ecological Risk Assessment (ERA) based on metal concentrations measured in the sediment and water of several aquatic environments from the Amazon basin, based on the risk quotient values (RQ = measured environmental concentration - MEC/predicted no effect concentration - PNEC). In addition, the metal contamination factor (CF) was estimated. Although metal concentrations in water were generally low, these values were far above the limits established by current national legislation in many areas, showing higher concentrations for the metals Co, Pb, Cr, Cu, and Ni. Concentrations of Mn, Cu, Ba, Pb, Co, Ni, Cr, Zn, Cd, and As were especially high in the sediment for several evaluated environments. The ERA for the water compartment revealed that 56% of the studied areas presented high risk (RQ > 1) for aquatic biota. In the sediment, 66% of the sites presented a high risk and 40% medium risk (RQ = 0.1-1). The CF indicated that 49% of the sampling points had high contamination and only 24%, had low contamination. These results reveal that monitoring studies in the Amazon region, provides important information so that public policies for the preservation of water resources can be strengthened in the Amazon.
Collapse
Affiliation(s)
- Diego Ferreira Gomes
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil.
| | - Thandy Júnio da Silva Pinto
- Institute of Chemistry, University of Campinas - UNICAMP, Rua Josué de Castro, S/n - Cidade Universitária, 13083-970, Campinas, São Paulo, Brazil
| | - Larissa Broggio Raymundo
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Vinicius da Fontoura Sperandei
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Michiel Daam
- CENSE - Center for Environmental and Sustainability Research & CHANGE - Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Raquel Aparecida Moreira
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Avenida Itália, Km 8, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Odete Rocha
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
4
|
Freitas EC, Rocha O, Espíndola ELG. Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: A mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:663-672. [PMID: 30056931 DOI: 10.1016/j.ecoenv.2018.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobials are commonly used in aquaculture to treat infectious diseases in fish. The overuse of these chemicals, however, has made them a contamination source for the aquatic environments. In this study, single and combined effects of florfenicol (FLO) and oxytetracycline (OTC), two antimicrobials widely used in the fish farming, were evaluated in acute and chronic toxicity tests using the tropical cladoceran Ceriodaphnia silvestrii as a model species. Also, a preliminary risk characterization of FLO and OTC for zooplankton was carried out, taking into account different exposure scenarios. The results obtained revealed that FLO and OTC have adverse effects on the mobility, reproduction and population growth rate of C. silvestrii in single exposures. In addition, mixture effects on the C. silvestrii were more severe than predicted effects based on the Concentration Addition model, showing a synergistic deviation for the mobility and a dose-level dependent deviation for the reproduction (synergism at higher levels than EC60). In relation to the risk characterization, risk quotients (RQs) exceeded 1 for chronic toxicity data obtained in both OTC and mixture exposures, indicating that the concentrations of these chemicals in Brazilian freshwater bodies could potentially present risks for the reproduction of zooplankton species in tropical regions. The RQs obtained for the mixtures were higher than those obtained for each chemical separately. Therefore, it is highly recommended that RQs are derived from single and mixture exposure data in order to obtain a more accurate risk characterization.
Collapse
Affiliation(s)
- Emanuela Cristina Freitas
- Department of Hydraulic and Sanitation (NEEA/CRHEA/SHS), Engineering School of São Carlos, University of São Paulo, Avenue Trabalhador São-Carlense 400, CEP 13560-970 São Carlos, SP, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Evaldo Luiz Gaeta Espíndola
- Department of Hydraulic and Sanitation (NEEA/CRHEA/SHS), Engineering School of São Carlos, University of São Paulo, Avenue Trabalhador São-Carlense 400, CEP 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Binet MT, Adams MS, Gissi F, Golding LA, Schlekat CE, Garman ER, Merrington G, Stauber JL. Toxicity of nickel to tropical freshwater and sediment biota: A critical literature review and gap analysis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:293-317. [PMID: 28975699 DOI: 10.1002/etc.3988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
More than two-thirds of the world's nickel (Ni) lateritic deposits are in tropical regions, and just less than half are within South East Asia and Melanesia (SEAM). With increasing Ni mining and processing in SEAM, environmental risk assessment tools are required to ensure sustainable development. Currently, there are no tropical-specific water or sediment quality guideline values for Ni, and the appropriateness of applying guideline values derived for temperate systems (e.g., Europe) to tropical ecosystems is unknown. Databases of Ni toxicity and toxicity tests for tropical freshwater and sediment species were compiled. Nickel toxicity data were ranked, using a quality assessment, identifying data to potentially use to derive tropical-specific Ni guideline values. There were no data for Ni toxicity in tropical freshwater sediments. For tropical freshwaters, of 163 Ni toxicity values for 40 different species, high-quality chronic data, based on measured Ni concentrations, were found for just 4 species (1 microalga, 2 macrophytes, and 1 cnidarian), all of which were relevant to SEAM. These data were insufficient to calculate tropical-specific guideline values for long-term aquatic ecosystem protection in tropical regions. For derivation of high-reliability tropical- or SEAM-specific water and sediment quality guideline values, additional research effort is required. Using gap analysis, we recommend how research gaps could be filled. Environ Toxicol Chem 2018;37:293-317. © 2017 SETAC.
Collapse
Affiliation(s)
- Monique T Binet
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
| | - Merrin S Adams
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
| | - Francesca Gissi
- CSIRO Oceans and Atmosphere, Lucas Heights, New South Wales, Australia
| | - Lisa A Golding
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
| | - Christian E Schlekat
- Nickel Producers Environmental Research Association, Durham, North Carolina, USA
| | - Emily R Garman
- Nickel Producers Environmental Research Association, Durham, North Carolina, USA
| | | | | |
Collapse
|
6
|
Spadoto M, Sueitt APE, Galinaro CA, Pinto TDS, Pompei CME, Botta CMR, Vieira EM. Ecotoxicological effects of bisphenol A and nonylphenol on the freshwater cladocerans Ceriodaphnia silvestrii and Daphnia similis. Drug Chem Toxicol 2017; 41:449-458. [DOI: 10.1080/01480545.2017.1381109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mariângela Spadoto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Ana Paula Erbetta Sueitt
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Carlos Alexandre Galinaro
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Tiago da Silva Pinto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Caroline Moço Erba Pompei
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Clarice Maria Rispoli Botta
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Eny Maria Vieira
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
Mevenkamp L, Brown A, Hauton C, Kordas A, Thatje S, Vanreusel A. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:178-183. [PMID: 28963926 DOI: 10.1016/j.aquatox.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC50 values ranged between 0.561 and 1.864mg Cu2+L-1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors.
Collapse
Affiliation(s)
- Lisa Mevenkamp
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium.
| | - Alastair Brown
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Chris Hauton
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Anna Kordas
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| | - Sven Thatje
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Oliveira-Filho EC, Caixeta NR, Simplício NCS, Sousa SR, Aragão TP, Muniz DHF. Implications of water hardness in ecotoxicological assessments for water quality regulatory purposes: a case study with the aquatic snail Biomphalaria glabrata (Say, 1818). BRAZ J BIOL 2014; 74:175-80. [DOI: 10.1590/1519-6984.24212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/22/2013] [Indexed: 11/22/2022] Open
Abstract
Water hardness is a property depending on the presence of alkaline earth metals, mainly calcium and magnesium. Among the strategies for water quality monitoring, ecotoxicological assays are performed to minimize impacts and classify water bodies. For these laboratory evaluations parameters are previously defined in the guidelines, including water hardness for both cultivation and testing medium. The present work was performed to evaluate the effects of different levels of water hardness on the survival and reproduction of the freshwater snail Biomphalaria glabrata and discuss the influence of natural water hardness on the results of ecotoxicological tests with these environmental samples. Comparing the groups it was possible to observe that those maintained in waters with least hardness had lower reproductive success, while the groups maintained in highest hardness showed better reproduction. These data show that waters with low hardness make the reproduction of the snail B. glabrata unfeasible, and this reveal a problem for ecotoxicity assays using natural water samples.
Collapse
Affiliation(s)
| | - NR Caixeta
- Embrapa Cerrados, Brazil; Centro Universitário de Brasília, Brazil
| | - NCS Simplício
- Embrapa Cerrados, Brazil; Centro Universitário de Brasília, Brazil
| | | | - TP Aragão
- Embrapa Cerrados, Brazil; Centro Universitário de Brasília, Brazil
| | | |
Collapse
|
9
|
Wendling LA, Binet MT, Yuan Z, Gissi F, Koppel DJ, Adams MS. Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2602-2610. [PMID: 23929702 DOI: 10.1002/etc.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/12/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
Prior to the productive use of iron- and steel-making slags as environmental amendments, a risk assessment supported by material characterization concomitant with leaching and ecotoxicological testing is necessary. Five iron- and steel-making slags were characterized geochemically, and the leachability of their elemental constituents was assessed. The toxicity of slag leachate to microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), and bacteria (Vibrio fischeri) was related to elemental composition. Slag leachates with the highest concentrations of dissolved elements were the most toxic (10% effective concentration [EC10] ∼1%), whereas those with the lowest concentrations of elements were the least toxic (EC10 63-85%). It was not possible to determine which elements caused the observed toxicity; however, comparisons with contaminant guidelines and published toxicity data identified several elements of potential environmental concern. Low to moderate activities were measured for radionuclides in the U and Th decay chains in slags. Based on these data, some of the slags examined herein are potentially suitable for use as environmental amendments following ≥10 times dilution to ameliorate potential toxic effects because of leachate pH.
Collapse
Affiliation(s)
- Laura A Wendling
- Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|