1
|
Singh D, Malhotra P, Agarwal P, Kumar R. N-acetyl-l-tryptophan (NAT) ameliorates radiation-induced cell death in murine macrophages J774A.1 via regulating redox homeostasis and mitochondrial dysfunction. J Biochem Mol Toxicol 2024; 38:e23529. [PMID: 37702290 DOI: 10.1002/jbt.23529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Ionizing radiation interacts with the immune system and induces molecular damage in the cellular milieu by generating reactive oxygen species (ROS) leading to cell death. The present study was performed to investigate the protective efficacy of N-acetyl-L-tryptophan (NAT) against gamma-radiation-induced cell death in murine macrophage J774A.1 cells. The radioprotective efficacy of NAT was evaluated in terms of cell survivability, effect on antioxidant enzyme activity, and free radicals inhibition. Radioprotective efficacy of NAT pretreatment to irradiated cells was assessed via cell cycle progression, mitochondrial membrane potential (MMP) perturbation, and apoptosis regulation using flow cytometry. Results of the study demonstrated significant radioprotective efficacy (>80%) of NAT in irradiated cells as estimated by sulforhodamine B (SRB), MTT, and clonogenic assay. Significant (p < 0.001) reduction in ROS, xanthine oxidase, and mitochondrial superoxide levels along with increment in catalase, glutathione-s-transferase, glutathione, and ATPase activities in NAT pretreated plus irradiated cells was observed as compared to the gamma-irradiated cells. Further, significant (p < 0.001) stabilization of MMP and reduction in apoptosis was also observed in NAT pretreated plus irradiated cells as compared to irradiated cells that not pretreated with NAT. The current study demonstrates that NAT pretreatment to irradiated cells protects against gamma radiation-induced cell death by reducing oxidative stress, stabilizing MMP, and inhibiting apoptosis. These observations conclusively highlight the potential of developing NAT as a prospective radioprotective agent upon further validation using in-depth preclinical assessment in cellular and animal models.
Collapse
Affiliation(s)
- Darshana Singh
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Malhotra
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Prerna Agarwal
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
2
|
Kumari P, Kumar R, Singh D, Kumar R. N-acetyl-L-tryptophan (NAT) provides protection to intestinal epithelial cells (IEC-6) against radiation-induced apoptosis via modulation of oxidative stress and mitochondrial membrane integrity. Mol Biol Rep 2023; 50:6381-6397. [PMID: 37322322 DOI: 10.1007/s11033-023-08579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ionizing radiation generates oxidative stress in biological systems via inducing free radicals. Gastro-intestinal system has been known for its high radiosensitivity. Therefore, to develop an effective radiation countermeasure for gastrointestinal system, N-acetyl L-tryptophan was evaluated for its radioprotective efficacy using intestinal epithelial cells-6 (IEC-6) cells as the experimental model. METHODS AND RESULTS Cellular metabolic and lysosomal activity of L-NAT and L-NAT treated irradiated IEC-6 cells were assessed by MTT and NRU staining, respectively. ROS and mitochondrial superoxide levels along with mitochondrial disruption were detected using specific fluorescent probes. Endogenous antioxidants (CAT, SOD, GST, GPx) activities were determined using calorimetric assay. Apoptosis and DNA damage were assessed using flow cytometery and Comet assay, respectively. Results of the study were demonstrated that L-NAT pre-treatment (- 1 h) to irradiated IEC-6 cells significantly contribute to ensuring 84.36% to 87.68% (p < 0.0001) survival at 0.1 μg/mL concentration against LD50 radiation dose (LD50; 20 Gy). Similar level of radioprotection was observed with a clonogenic assay against γ radiation (LD50; 5 Gy). L-NAT was found to provide radioprotection by neutralizing radiation-induced oxidative stress, enhancing antioxidant enzymes (CAT, SOD, GST, and GPx), and protecting DNA from radiation-induced damage. Further, significant restoration of mitochondrial membrane integrity along with apoptosis inhibition was observed with irradiated IEC-6 cells upon L-NAT pretreatment.
Collapse
Affiliation(s)
- Pratibha Kumari
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ravi Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Darshana Singh
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
3
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. Protection to immune system of mice by N-acetyl tryptophan glucoside (NATG) against gamma radiation induced immune suppression. Mol Immunol 2019; 114:578-590. [PMID: 31526941 DOI: 10.1016/j.molimm.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Immune system is a critical modulator of radiation-induced biological effects. In this study, we have assessed protective potential of N-acetyl tryptophan glucoside (NATG) pre-treatment in bone marrow of gamma radiation challenged mice. Isolated bone marrow cells were analysed for cell cycle progression by flow cytometry, while various pro-/anti-inflammatory cytokine profiles were performed by ELISA method. Overall radioprotective ability of NATG in ensuring protection against gamma radiation-induced damage was assessed by evaluating whole body survival analysis and haematological studies on 9 Gy irradiated mice with/without NATG pre-treatment. Results exhibited pre-treatment with 150 mg/kg b.wt oral administration of NATG as most effective against 9 Gy radiation exposure. Moreover, NATG showed non-interfering effect on cell cycle progression in pre-treated irradiated mice group when compared to radiation alone group. In addition, cytokine expression analysis indicated significant (p > 0.05) elevation in levels of IFN-γ, IL-2, IL-12, IL-13 and IL-17 in NATG pre-treated irradiated mice in comparison to radiation alone group. On the contrary, NATG pre-treatment was observed to alleviate levels of TNF-α and IL-10 significantly (p < 0.05) in radiated group as compared to only irradiated mice group. Furthermore, NATG pre-treatment to 9 Gy radiation exposed mice aided in restoring their haematological parameters in terms of haemoglobin counts, RBC counts, WBC counts, hematocrit levels, platelets and granulocyte levels in comparison to irradiated alone mice, thus enhancing their immune system and contributing towards a better survival against gamma radiation-induced deleterious effects. Conclusively, this study highlights the potential of NATG as a prospective radiation countermeasure agent against ionizing radiation-induced assaults to the immune system.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India.
| |
Collapse
|
4
|
Malhotra P, Singh D, Kumar R. In vitro stimulatory effect of N-acetyl tryptophan-glucopyranoside against gamma radiation induced immunosuppression. ENVIRONMENTAL TOXICOLOGY 2018; 33:305-314. [PMID: 29205752 DOI: 10.1002/tox.22517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Radiation-induced manifestations like free radical burst, oxidative damage and apoptosis leading to cell death. In present study, N-acetyl tryptophan glucopyranoside (NATG) was assessed for its immune-radioprotective activities using J774A.1 cells. Clonogenic cell survival, cell cycle progression and cytokines i.e. IFN-γ, TNF-α, IL-2, IL-10, IL-12, IL-13 and IL-17A expression were evaluated in irradiated and NATG pretreated cells using clonogenic formation ability, flow cytometry and ELISA assay. Results indicated that 0.25μg/ml NATG exhibited maximum radioprotection against gamma-radiation (2Gy) without intervening in cell cycle progression. NATG pretreated (-2 h) plus irradiated cells showed significant elevation in IFN-γ (∼38.2%), IL-17A (∼53.7%) and IL-12 (∼58.8%) expression as compared to only irradiated cells. Conversely, significant decrease in TNF-α (∼21.6%), IL-10 (∼31.2%), IL-2 (∼23.7%) and IL-13 expression (∼17.8%) were observed in NATG pretreated plus irradiated cells as compared to irradiated cells. Conclusively, NATG pretreatment to irradiated J774A.1 cells, stimulate Th1 while diminish Th2 cytokines that contributes to radioprotection.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
5
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. N-Acetyl-tryptophan glucoside (NATG) protects J774A.1 murine macrophages against gamma radiation-induced cell death by modulating oxidative stress. Mol Cell Biochem 2018; 447:9-19. [PMID: 29372532 DOI: 10.1007/s11010-018-3289-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022]
Abstract
Immune system is amongst the most radiosensitive system to radiation-induced cellular and molecular damage. Present study was focused on the evaluation of radioprotective efficacy of a novel secondary metabolite, N-acetyl tryptophan glucoside (NATG), isolated from a radioresistant bacterium Bacillus sp. INM-1 using murine macrophage J774A.1 cells experimental model. Radioprotective efficacy of NATG against radiation-induced DNA damage and apoptosis was estimated using phosphatidyl-serine-externalization Annexin V-PI and Comet assay analysis. Radiation-induced cell death is the outcome of oxidative stress caused by free radicals. Therefore, perturbations in antioxidant enzymes i.e., superoxide dismutase (SOD), catalase, glutathione-s-transferase (GST) and GSH activities in irradiated and NATG pre-treated irradiated J774A.1 cells were studied. Results of the present study demonstrated that NATG pre-treated (0.25 µg/ml) irradiated (20 Gy) cells showed significant (p < 0.05) reduction in apoptotic cells index at 4-48 h as compared to radiation alone cells. Comet assay exhibited significant protection to radiation-induced DNA damage in J774A.1 cells. Significantly shortened DNA tail length, increased % Head DNA contents and lower olive tail moment was observed in NATG pre-treated irradiated cells as compared to radiation alone cells. Further, significant increase in catalase (~ 3.9 fold), SOD (67.52%), GST (~ 1.9 fold), and GSH (~ 2.5 fold) levels was observed in irradiated cells pre-treated with NATG as compared to radiation-alone cells. In conclusion, current study suggested that NATG pre-treatment to irradiated cells enhanced antioxidant enzymes in cellular milieu that may contribute to reduce oxidative stress and decrease DNA damage which resulted to significant reduction in the cell death of irradiated macrophages.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India. .,Radiation Biotechnology Group, Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
6
|
Malhotra P, Adhikari M, Mishra S, Singh S, Kumar P, Singh SK, Kumar R. N-acetyl tryptophan glucopyranoside (NATG) as a countermeasure against gamma radiation-induced immunosuppression in murine macrophage J774A.1 cells. Free Radic Res 2016; 50:1265-1278. [DOI: 10.1080/10715762.2016.1235788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Poonam Malhotra
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Saurabh Mishra
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sumit Singh
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Piyush Kumar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Buddh Nagar, Uttar Pradesh, India
| | - Shravan Kumar Singh
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
7
|
Mishra S, Patel DD, Bansal DD, Kumar R. Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. ENVIRONMENTAL TOXICOLOGY 2016; 31:478-488. [PMID: 25361477 DOI: 10.1002/tox.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Present study was undertaken to evaluate radioprotective and immunomodulatory activities of a novel semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 in C57 BL/6 mice. Whole body survival study was performed to evaluate in vivo radioprotective efficacy of SQGD. To observe effect of SQGD on immunostimulation, Circulatory cytokine (i.e., interleukin-2 (IL-2), IFN-γ, IL-10, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating factor (M-CSF) expression was analyzed in serum of irradiated and SQGD treated mice at different time intervals using ELISA assay. Results of the present investigation indicated that SQGD pre-treatment (-2 h) to lethally irradiated mice provide ∼ 83% whole body survival compared with irradiated mice where no survival was observed at 30(th) post irradiation day. Significant (p < 0.05) induction in IL-2 and IFN-γ expression was observed at all tested time intervals with SQGD pre-treated irradiated mice as compared with irradiated mice alone. However, sharp increase in IL-10 expression was observed in irradiated mice which were found to be subsidized in irradiated mice pre-treated with SQGD. Similarly, significant (p < 0.05%) induction in G-CSF, M-CSF and GM-CSF expression was observed in irradiated mice treated with SQGD as compared with irradiated control mice at tested time intervals. In conclusion, SQGD pre-treatment to irradiated mice enhanced expression of IL-12 and IFN-γ while down-regulated IL-10 expression and thus modulates cytoprotective pro-inflammatory TH1 type immune response in irradiated mice. Further, SQGD pre-treatment to irradiated mice accelerate G-CSF, GM-CSF and M-CSF expression suggesting improved haematopoiesis and enhanced cellular immune response in immuno-compromised irradiated mice that may contribute to in vivo radiation protection.
Collapse
Affiliation(s)
- S Mishra
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Patel
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Bansal
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - R Kumar
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|