1
|
Fan M, Shu L, Zhang X, Yu M, Du Y, Qiu J, Yang X. Synergistic cytotoxicity of binary combinations of inorganic and organic disinfection byproducts assessed by real-time cell analysis. J Environ Sci (China) 2022; 117:222-231. [PMID: 35725074 DOI: 10.1016/j.jes.2022.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Chlorine, chlorine dioxide, and ozone are widely used as disinfectants in drinking water treatments. However, the combined use of different disinfectants can result in the formation of various organic and inorganic disinfection byproducts (DBPs). The toxic interactions, including synergism, addition, and antagonism, among the complex DBPs are still unclear. In this study, we established and verified a real-time cell analysis (RTCA) method for cytotoxicity measurement on Chinese hamster ovary (CHO) cell. Using this convenient and accurate method, we assessed the cytotoxicity of a series of binary combinations consisting of one of the 3 inorganic DBPs (chlorite, chlorate, and bromate) and one of the 32 regulated and emerging organic DBPs. The combination index (CI) of each combination was calculated and evaluated by isobolographic analysis to reflect the toxic interactions. The results confirmed the synergistic effect on cytotoxicity in the binary combinations consisting of chlorite and one of the 5 organic DBPs (2 iodinated DBPs (I-DBPs) and 3 brominated DBPs (Br-DBPs)), chlorate and one of the 4 organic DBPs (3 aromatic DBPs and dibromoacetonitrile), and bromate and one of the 3 organic DBPs (2 I-DBPs and dibromoacetic acid). The possible synergism mechanism of organic DBPs on the inorganic ones may be attributed to the influence of organic DBPs on cell membrane and cell antioxidant system. This study revealed the toxic interactions among organic and inorganic DBPs, and emphasized the latent adverse outcomes in the combined use of different disinfectants.
Collapse
Affiliation(s)
- Mengge Fan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinran Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Miao Yu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongting Du
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Junlang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li M, Xiao M, Xiao Q, Chen Y, Guo Y, Sun J, Li R, Li C, Zhu Z, Qiu H, Liu X, Lu S. Perchlorate and chlorate in breast milk, infant formulas, baby supplementary food and the implications for infant exposure. ENVIRONMENT INTERNATIONAL 2022; 158:106939. [PMID: 34673317 DOI: 10.1016/j.envint.2021.106939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Perchlorate and chlorate are ubiquitous pollutants in various types of foodstuffs, drinking water and environmental compartments. They have raised great concerns due to potential adverse effects on human thyroid functions. Dietary intake is considered as the predominant pathway for human exposure to perchlorate and chlorate. Nevertheless, data on human exposure to the chemicals above remain limited, particularly for the most vulnerable populations such as infants. In the present study, 62 breast milks, 53 infant formulas, 88 baby supplementary food and 50 tap water samples were collected in South China and the levels of perchlorate and chlorate were measured in these samples. Perchlorate and chlorate were frequently detected in more than 90% of measured samples. In these different types of samples, the median concentrations of perchlorate were 0.65 μg/L, 0.61 μg/kg, 0.56 μg/kg and 1.18 μg/L, respectively, while the median concentrations of chlorate were 1.73 μg/L, 2.48 μg/kg, 2.67 μg/kg and non-detected, respectively. Health risk assessment using hazard quotient suggested that perchlorate and chlorate exposure in the sampled baby food are not expected to increase the risk of an adverse health effect. To our knowledge, this is the first study simultaneously investigating perchlorate and chlorate exposure in Chinese infants via food intake.
Collapse
Affiliation(s)
- Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Minhua Xiao
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yichen Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jing Sun
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Rong Li
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xihong Liu
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
3
|
Cabellos J, Delpivo C, Vázquez-Campos S, Janer G. In vitro assessment of CeO2 nanoparticles effects on intestinal microvilli morphology. Toxicol In Vitro 2019; 59:70-77. [DOI: 10.1016/j.tiv.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/03/2023]
|
4
|
|
5
|
Ali SN, Arif H, Khan AA, Mahmood R. Acute renal toxicity of sodium chlorate: Redox imbalance, enhanced DNA damage, metabolic alterations and inhibition of brush border membrane enzymes in rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1182-1194. [PMID: 30144278 DOI: 10.1002/tox.22624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Sodium chlorate (NaClO3 ) is widely used in paper and pulp industries and as a non-selective herbicide. Humans can be exposed to NaClO3 through contaminated drinking water due to its improper and unchecked usage in industries and as herbicide. NaClO3 is also present as a major stable by-product in drinking water that has been disinfected with chlorine dioxide. In this study, we have investigated the effect of a single acute oral dose of NaClO3 on rat kidney. Adult male Wistar rats were divided into one control and four NaClO3 treated groups that were orally given different doses of NaClO3 and euthanized 24 hr after the treatment. Oral administration of NaClO3 resulted in increased hydrogen peroxide levels, lipid, and protein oxidation while thiol and glutathione content and activities of brush border membrane enzymes were decreased in kidney in a NaClO3 dose-dependent manner. Significant alterations in the activities of enzymes involved in carbohydrate metabolism and antioxidant defense were also observed. Administration of NaClO3 induced DNA fragmentation and increased DNA-protein cross-linking. Histological studies showed marked damage in kidney from NaClO3 treated animals. These results strongly suggest that NaClO3 induces nephrotoxicity via redox imbalance that results in DNA and membrane damage, metabolic alterations and brush border membrane enzyme dysfunction.
Collapse
Affiliation(s)
- Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
6
|
Ali SN, Ansari FA, Arif H, Mahmood R. Sodium chlorate induces DNA damage and DNA-protein cross-linking in rat intestine: A dose dependent study. CHEMOSPHERE 2017; 177:311-316. [PMID: 28319884 DOI: 10.1016/j.chemosphere.2017.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Sodium chlorate (NaClO3) is widely used in paper and pulp industries and as a non-selective herbicide. It is also a major by-product generated upon disinfection of drinking water by chlorine dioxide. In this study, we have investigated the genotoxicity of NaClO3 on the small intestine of rats. Adult male rats were divided into 5 groups: one control and four NaClO3 treated groups. The NaClO3 treated groups were given a single acute oral dose of NaClO3 (100, 250, 500 and 750 mg/kg body weight) and sacrificed 24 h later. Administration of NaClO3 caused significant DNA damage in a dose dependent manner in the rat intestine. This was evident from the comet assay which showed DNA strand breaks and was further confirmed by agarose gel electrophoresis and release of free nucleotides. Increased DNA protein cross-linking in NaClO3 administered groups showed formation of a critical lesion which hampers activities of proteins/enzymes involved in DNA repair, transcription and replication. Thus, oral administration of NaClO3 induces DNA damage in the rat intestine, probably through chlorate induced production of reactive oxygen species.
Collapse
Affiliation(s)
- Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Fariheen Aisha Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|