1
|
Honda A, Inoue KI, Higashihara M, Ichinose T, Ueda K, Takano H. Differential Pattern of Cell Death and ROS Production in Human Airway Epithelial Cells Exposed to Quinones Combined with Heated-PM2.5 and/or Asian Sand Dust. Int J Mol Sci 2023; 24:10544. [PMID: 37445720 DOI: 10.3390/ijms241310544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The combined toxicological effects of airborne particulate matter (PM), such as PM2.5, and Asian sand dust (ASD), with surrounding chemicals, particularly quinones, on human airway epithelial cells remain underexplored. In this study, we established an in vitro combination exposure model using 1,2-naphthoquinones (NQ) and 9,10-phenanthroquinones (PQ) along with heated PM (h-PM2.5 and h-ASD) to investigate their potential synergistic effects. The impacts of quinones and heated PM on tetrazolium dye (WST-1) reduction, cell death, and cytokine and reactive oxygen species (ROS) production were examined. Results revealed that exposure to 9,10-PQ with h-PM2.5 and/or h-ASD dose-dependently increased WST-1 reduction at 1 μM compared to the corresponding control while markedly decreasing it at 10 μM. Higher early apoptotic, late apoptotic, or necrotic cell numbers were detected in 9,10-PQ + h-PM2.5 exposure than in 9,10-PQ + h-ASD or 9,10-PQ + h-PM2.5 + h-ASD. Additionally, 1,2-NQ + h-PM2.5 exposure also resulted in an increase in cell death compared to 1,2-NQ + h-ASD and 1,2-NQ + h-PM2.5 + h-ASD. Quinones with or without h-PM2.5, h-ASD, or h-PM2.5 + h-ASD significantly increased ROS production, especially with h-PM2.5. Our findings suggest that quinones, at relatively low concentrations, induce cell death synergistically in the presence of h-PM2.5 rather than h-ASD and h-PM2.5 + h-ASD, partially through the induction of apoptosis with increased ROS generation.
Collapse
Affiliation(s)
- Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Ken-Ichiro Inoue
- School of Nursing, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Takamichi Ichinose
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
- Department of Health Science, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto 615-8577, Japan
| |
Collapse
|
2
|
Wang XN, Wang HJ, Ma Y, Liu JR, Hao Y, Ma CQ, Liu N, Cui YX, Shi XM, Gong FL, Wu XL. Concentrations, seasonal trends, sources, health risk and subchronic toxicity to the respiratory and immune system of PAHs in PM 2.5 in Xi'an. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 58:276-283. [PMID: 35137675 DOI: 10.1080/10934529.2022.2033582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) have been proved to be hazardous to health. Previous studies have focused on the distribution and sources of PAHs, whereas there is little knowledge of the damage to organs. Here we sought to investigate the pollution level and seasonal variation characteristics of PAHs in PM2.5 in Xi'an and assess the health risk, to establish a PAHs exposure model, and investigate the toxicological effects of PAHs on the respiratory and immune functions. A sub-chronic exposure model of PAHs was established by inhalation. The pathological changes of lung tissues were observed with a light microscope. Inflammatory reactions in alveolar lavage fluid were determined using the corresponding kit. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were detected with enzyme linked immunosorbent assay (ELISA) kit; the proliferation of lymphocytes in spleen was detected with methyl tetrazolium (MTT); DNA immune damage was determined with DNA gel electrophoresis. The results showed that (1) the total concentration of 16 PAHs ranged from 41.1 to 387 ng/m3, with a mean value of 170 ng/m3, and the concentration of PAHs in PM2.5 was higher in winter than in other seasons. (2) The sources of PAHs in the atmosphere of Xi'an urban area were mainly coal combustion, and the equivalent carcinogenic concentration of PAHs in PM2.5 was 3.9 ng/m3. (3) Foreign body granuloma formation and inflammatory cell damage were observed in the lungs of rats infected with toxin; the levels of reactive oxygen species (ROS) and mobile device assistant (MDA) increased while nitric oxide synthase (NOS) decreased with the increase of dose; the expression levels of IL-6 and IL-8 elevated with the increase of toxin dose, showing an obvious dose-effect relationship; the level of PAHs damage to cells showed a dose-effect relationship. Sub-chronic exposure to PAHs could cause sustained inflammatory injury to the organism. Measures should be taken to counter the problems of PAHs in PM2.5 in Xi'an and relevant health promotion strategies should be developed.
Collapse
Affiliation(s)
- Xiang-Ni Wang
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hui-Juan Wang
- Department of Dermatology, the Ninth Hospital of Xi'an, Xi'an, China
| | - Yan Ma
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin-Ren Liu
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yue Hao
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cai-Qin Ma
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Cui
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xing-Min Shi
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Fu-Liang Gong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi-Li Wu
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Yanagisawa R, Koike E, Takano H. Benzo[a]pyrene aggravates atopic dermatitis-like skin lesions in mice. Hum Exp Toxicol 2021; 40:S269-S277. [PMID: 34424081 DOI: 10.1177/09603271211036123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Benzo[a]pyrene (BaP) affects the immune system and causes mutagenic and carcinogenic effects. Purpose: We aimed to evaluate the effects of systemic exposure to BaP on mite allergen-induced atopic dermatitis (AD)-like skin lesions in mice. Methods: Mite allergen (Dermatophagoides pteronyssinus; Dp) was injected intradermally into the right ears of NC/Nga male mice on eight occasions every 2-3 days. Benzo[a]pyrene was administered intraperitoneally in the equivalent doses of 0, 2, 20, 200, or 2000 μg/kg/day, once a week on four occasions. Results: AD-like skin inflammation related to mite allergen worsened by BaP exposure at 2, 20 µg/kg/day doses; this was in parallel with eosinophil and mast cell infiltration and mast cell degranulation. A trend was also observed toward increased proinflammatory molecule expression, including macrophage inflammatory protein-1 alpha, interleukin (IL)-4, IL-13, and IL-18, in the ear tissue. However, 200 or 2000 µg/kg/day BaP attenuated the enhancing effects. In the regional lymph nodes, 2 µg/kg/day BaP with Dp enhanced antigen-presenting cell and T cell activation compared with Dp alone. Conclusions: This suggests that BaP exposure can aggravate Dp-induced AD-like skin lesions through TH2-biased responses in the inflamed sites and the activation of regional lymph nodes. Therefore, BaP may be responsible for the recent increase in AD incidence.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, 12918Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|
5
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
6
|
Mu Z, Zhang J. The Role of Genetics, the Environment, and Epigenetics in Atopic Dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:107-140. [PMID: 32445093 DOI: 10.1007/978-981-15-3449-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic Dermatitis (AD) is a common inflammatory disease with a genetic background. The prevalence of AD has been increasing in many countries. AD patients often have manifestations of pruritus, generalized skin dryness, and eczematous lesions. The pathogenesis of AD is complicated. The impaired skin barrier and immune imbalance play significant roles in the development of AD. Environmental factors such as allergens and pollutants are associated with the increasing prevalence. Many genetic and environmental factors induce a skin barrier deficiency, and this can lead to immune imbalance, which exacerbates the impaired skin barrier to form a vicious cycle (outside-inside-outside view). Genetic studies find many gene mutations and genetic variants, such as filaggrin mutations, which may directly induce the deficiency of the skin barrier and immune system. Epigenetic studies provide a connection between the relationship of an impaired skin barrier and immune and environmental factors, such as tobacco exposure, pollutants, microbes, and diet and nutrients. AD is a multigene disease, and thus there are many targets for regulation of expression of these genes which may contribute to the pathogenesis of AD. However, the epigenetic regulation of environmental factors in AD pathogenesis still needs to be further researched.
Collapse
Affiliation(s)
- Zhanglei Mu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
7
|
Lai AM, Clark S, Carter E, Shan M, Ni K, Yang X, Baumgartner J, Schauer JJ. Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. INDOOR AIR 2020; 30:294-305. [PMID: 31880849 DOI: 10.1111/ina.12636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Biomass combustion for cooking and heating releases particulate matter (PM2.5 ) that contributes to household air pollution. Fuel and stove types affect the chemical composition of household PM, as does infiltration of outdoor PM. Characterization of these impacts can inform future exposure assessments and epidemiologic studies, but is currently limited. In this study, we measured chemical components of PM2.5 (water-soluble organic matter [WSOM], ions, black carbon, elements, organic tracers) in rural Chinese households using traditional biomass stoves, semi-gasifier stoves with pelletized biomass, and/or non-biomass stoves. We distinguished households using one stove type (traditional, semi-gasifier, or LPG/electric) from those using multiple stoves/fuels. WSOM concentrations were higher in households using only semi-gasifier or traditional stoves (31%-33%) than in those with exclusive LPG/electric stove (13%) or mixed stove use (12%-22%). Inorganic ions comprised 14% of PM in exclusive LPG/electric households, compared to 1%-5% of PM in households using biomass. Total PAH content was much higher in households that used traditional stoves (0.8-2.8 mg/g PM) compared to those that did not (0.1-0.3 mg/g PM). Source apportionment revealed that biomass burning comprised 27%-84% of PM2.5 in households using biomass. In all samples, identified outdoor sources (vehicles, dust, coal combustion, secondary aerosol) contributed 10%-20% of household PM2.5 .
Collapse
Affiliation(s)
- Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sierra Clark
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, CO, USA
| | - Ming Shan
- Department of Building Science, Tsinghua University, Beijing, China
| | - Kun Ni
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Institute for Health and Social Policy, McGill University, Montreal, QC, Canada
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Dai Y, Huo X, Cheng Z, Wang Q, Zhang Y, Xu X. Alterations in platelet indices link polycyclic aromatic hydrocarbons toxicity to low-grade inflammation in preschool children. ENVIRONMENT INTERNATIONAL 2019; 131:105043. [PMID: 31352259 DOI: 10.1016/j.envint.2019.105043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the effect of PAHs on low-grade inflammation related to platelets in humans is unknown. OBJECTIVES We investigated the association of PAH exposure with low-grade inflammation and platelet parameters in healthy preschoolers. METHODS The present study recruited 239 participants, aged 2-7 years, from an electronic-waste (e-waste)-exposed (n = 118) and a reference (n = 121) area. We measured ten urinary PAH metabolites, four types of immune cells and cytokines, and seven platelet parameters, and compared their differences between children from the two groups. Spearman correlation analysis was performed to explore the potential risk factors for PAH exposure and the associations between urinary monohydroxylated PAHs (OH-PAHs) and biological parameters. Associations between urinary PAH metabolites and platelet indices were analyzed using quantile regression models. Mediation analysis was used to understand the relationship between urinary total hydroxynaphthalene (ΣOHNa) and interleukin (IL)-1β through seven platelet indices, as mediator variables. RESULTS We found higher urinary monohydroxylated PAH (OH-PAH) concentrations, especially 1-hydroxynaphthalene (1-OHNa) and 2-hydroxynaphthalene (2-OHNa), in children from the e-waste-exposed group than in the reference group. These were closely associated with child personal habits and family environment. A decreased lymphocyte ratio and increased pro-inflammatory cytokines, such as gamma interferon-inducible protein (IP)-10 and IL-1β, were found in the e-waste-exposed children. After adjustment for confounding factors, significantly negative correlations were found between levels of mean platelet volume (MPV), platelet distribution width (PDW), platelet-large cell ratio (P-LCR) and ratio of mean platelet volume to platelet count (MPVP) and OH-PAHs. In addition, ΣOHNa was positively associated with IL-1β mediated through MPV, PDW, P-LCR, and ratio of platelet count to lymphocyte count (PLR). CONCLUSIONS Platelet indices were significantly associated with the changes in urinary OH-PAH levels, which may can be regarded as effective biomarkers of low-grade inflammation resulting from low PAH exposure in healthy children.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
9
|
Pardo M, Xu F, Qiu X, Zhu T, Rudich Y. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:147-155. [PMID: 29335169 DOI: 10.1016/j.scitotenv.2018.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM2.5. HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM2.5. While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Chowdhury PH, Okano H, Honda A, Kudou H, Kitamura G, Ito S, Ueda K, Takano H. Aqueous and organic extract of PM 2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:223-234. [PMID: 29291522 DOI: 10.1016/j.envpol.2017.12.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Particulate matter with diameters <2.5 μm (i.e., PM2.5) has multiple natural and anthropological sources. The association between PM2.5 and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM2.5 that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM2.5 collected during four seasons in November 2014-December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM2.5 was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM2.5 extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM2.5 extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM2.5 components, collection areas and seasons.
Collapse
Affiliation(s)
- Pratiti Home Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitoshi Okano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Hitomi Kudou
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Zhang Y, Zhang W, Hou J, Wang X, Zheng H, Xiong W, Yuan J. Combined effect of tris(2-chloroethyl)phosphate and benzo (a) pyrene on the release of IL-6 and IL-8 from HepG2 cells via the EGFR-ERK1/2 signaling pathway. RSC Adv 2017. [DOI: 10.1039/c7ra11273d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tris(2-chloroethyl)phosphate plus benzo (a) pyrene induced inflammatory response in HepG2 cells through the activation of EGFR-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Youjian Zhang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Wenjuan Zhang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Jian Hou
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Xian Wang
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Hongyan Zheng
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Wei Xiong
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Jing Yuan
- Department of Occupational and Environmental Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| |
Collapse
|