1
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
2
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Chen X, Cai X, Zheng D, Huang X, Chen Y, Deng T, Mo L, Li H, Li J, Chen S. Norcantharidin counteracts acquired everolimus resistance in renal cell carcinoma by dual inhibition of mammalian target of rapamycin complex 1 and complex 2 pathways in Vitro. Anticancer Drugs 2022; 33:e94-e102. [PMID: 34261913 DOI: 10.1097/cad.0000000000001147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Everolimus, an oral mammalian target of rapamycin complex 1 (mTORC1) inhibitor, presents a therapeutic option in metastatic renal cell carcinoma (RCC) patients who were intolerant to, or previously failed, immune- and vascular endothelial growth factor-targeted therapies. However, the onset of drug resistance limits its clinical use. One possible mechanism underpinning the resistance is that inhibiting mTORC1 by everolimus results in mTORC2-dependent activation of v-Akt murine thymoma viral oncogene (AKT) and upregulation of hypoxia-inducible transcription factors (HIF). Norcantharidin (NCTD) is a demethylated derivative of cantharidin with antitumor properties which is an active ingredient of the traditional Chinese medicine Mylabris. In this study, everolimus-resistant RCC cells (786-O-R) obtained by chronic everolimus treatment revealed higher level of HIF2α and over-activated mTORC2 pathway and NCTD inhibits cell proliferation in both everolimus-resistant and -sensitive RCC cells by arresting cell cycle in G0/G1 phase and reducing cell cycle-related proteins of C-Myc and cyclin D. Furthermore, NCTD shows synergistic anticancer effects combined with everolimus in everolimus-resistant 786-O-R cells. Mechanically, NCTD repressed both mTORC1 and mTORC2 signaling pathways as well as downstream molecular signaling pathways, such as p-4EBP1, p-AKT, HIF1α and HIF2α. Our findings provide sound evidence that combination of NCTD and everolimus is a potential therapeutic strategy for treating RCC and overcoming everolimus resistance by dual inhibition of mTORC1 and mTORC2.
Collapse
Affiliation(s)
- Xinglu Chen
- Department of Urology
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, Guangdong
| | - Dianpeng Zheng
- Institute of Genetic, Zhejiang University School of Medicine, Hangzhou, Zhejiang
| | | | | | | | - Lijun Mo
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Genetic, Zhejiang University School of Medicine, Hangzhou, Zhejiang
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
4
|
Yang X, Liu P, Zhang X, Zhang J, Cui Y, Song M, Li Y. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112702. [PMID: 34478974 DOI: 10.1016/j.ecoenv.2021.112702] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
T-2 toxin is an inevitable mycotoxin in food products and feeds. It is a proven toxicant impairing the male reproductive system. However, previous studies have concentrated on the toxic effect of T-2 toxin on Leydig cells, with little attention on the Sertoli cell cytotoxicity. Therefore, this study aimed to establish the toxic mechanism of T-2 toxin on Sertoli cells. The Sertoli cell line (TM4 cell) was cultured and exposed to different concentrations of T-2 toxin with/without N-acetyl-L-cysteine (NAC) for 24 h. A CCK-8 assay then measured the cell viability. In addition, the expression of TM4 cell biomarkers (FSHR and ABP) and functional factors (occludin (Ocln), zonula occluden-1 (ZO-1), Connexin 43 (Cx-43), and N-Cadherin (N-cad)) were measured by qRT-PCR and Western blotting. The oxidative stress status (ROS, MDA, CAT, and SOD) and apoptosis rate, including the caspase-9, 8, and 3 activities in TM4 cells, were analyzed. We established that (1): T-2 toxin decreased TM4 cells viability and the half-maximal inhibitory concentration was 8.10 nM. (2): T-2 toxin-induced oxidative stress, evidenced by increased ROS and MDA contents, and inhibited CAT and SOD activities. (3): T-2 toxin inhibited FSHR, ABP, ocln, ZO-1, Cx-43, and N-Cad expressions. (4): T-2 toxin promoted TM4 cell apoptosis and caspase-9, 8, and 3 activities. (5): N-acetyl-L-cysteine relieved oxidative stress, functional impairment, and apoptosis in TM4 cells treated with T-2 toxin. Thus, T-2 toxin induced TM4 cell dysfunction through ROS-induced apoptosis.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Scalp Acupuncture and Treadmill Training Inhibits Neuronal Apoptosis through Activating cIAP1 in Cerebral Ischemia Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1418616. [PMID: 34804173 PMCID: PMC8604578 DOI: 10.1155/2021/1418616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/02/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Stroke is the leading cause of long-term disability in developed countries. Multitudinous evidence suggests that treadmill training treatment is beneficial for balance and stroke rehabilitation; however, the need for stroke therapy remains unmet. In the present study, a cerebral ischemia rat model was established by permanent middle cerebral artery occlusion (pMCAO) to explore the therapeutic effect and mechanism of scalp acupuncture combined with treadmill training on ischemic stroke. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and neuronal nuclear protein (NeuN) double staining and cellular inhibitor of apoptosis protein-1 (cIAP1) and NeuN immunofluorescence double staining were used to detect the short-term and long-term neuroprotective effects of scalp acupuncture combined with treadmill training on pMCAO rats. In addition, the antiapoptotic effect of the combined treatment was evaluated in pMCAO rats transfected with cIAP1 shRNA. Western blotting was used to detect the relative protein expression in the caspase-8/-9/-3 activation pathway downstream of cIAP1 to further clarify its regulatory mechanism. Our results showed that scalp acupuncture combined with treadmill training successfully achieved short-term and long-term functional improvement within 14 days after stroke, significantly inhibited neuronal apoptosis, and upregulated the expression of cIAP1 protein in the ischemic penumbra area of the ischemic brain. However, no significant functional improvement and antiapoptotic effect were found in pMCAO rats transfected with cIAP1 shRNA. Western blotting results showed that the combined therapy markedly inhibited the activation of the caspase-8/-9/-3 pathway. These findings indicate that scalp acupuncture combined with treadmill training therapy may serve as a more effective alternative modality in the treatment of ischemic stroke, playing an antiapoptotic role by upregulating the expression of cIAP1 and inhibiting the activation of the caspase-8/-9/-3 pathway.
Collapse
|
6
|
Zhan H, Bai Y, Lv Y, Zhang X, Zhang L, Deng S. Pharmacological mechanism of mylabris in the treatment of leukemia based on bioinformatics and systematic pharmacology. Bioengineered 2021; 12:3229-3239. [PMID: 34224300 PMCID: PMC8806889 DOI: 10.1080/21655979.2021.1943110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Leukemia is a common blood cancer, whose treatment usually necessitates chemo/radiotherapy and bone marrow transplant. Hence, safer and more effective options are urgently needed. Mylabris, the dried body of blister beetles, has been used extensively in traditional Chinese medicine. This study applied bioinformatics and systematic pharmacology to investigate the mechanism of action of mylabris in the treatment of leukemia. Five effective components and 35 corresponding target proteins were identified by screening the TCMSP database; whereas 776 genes related to leukemia were selected using OMIM, GeneCards, and the Therapeutic Target Database. Eight genes common to mylabris and leukemia were identified. Protein-protein interaction network analysis and a component-target-pathway diagram identified TP53 and PTEN as key gene targets of mylabris in the treatment of leukemia. GO enrichment analysis pointed to DNA damage and cell cycle disorder caused by p53 signaling as the most significant processes; whereas KEGG enrichment pointed to the p53 signaling pathway. In summary, mylabris may exert a therapeutic effect on leukemia by triggering DNA damage, inducing apoptosis, as well as inhibiting the growth and proliferation of tumor cells through the regulation of TP53 and PTEN. These findings provide a mechanistic rationale for the treatment of leukemia with traditional Chinese medicine.
Collapse
Affiliation(s)
- Huali Zhan
- Department of Humanities and Social Sciences, Zhejiang Industry Polytechnic College, Zhejiang, China
| | - Yujiao Bai
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yu Lv
- Wenzhou Medical University Renji College, Wenzhou, Zhejiang, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Lin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Pharmacy, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives. Bioorg Med Chem 2021; 32:116012. [PMID: 33454654 DOI: 10.1016/j.bmc.2021.116012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Cantharidin is a potent natural protein phosphatase monoterpene anhydride inhibitor secreted by several species of blister beetle, with its demethylated anhydride analogue, (S)-palasonin, occurring as a constituent of the higher plant Butea frondosa. Cantharidin shows both potent protein phosphatase inhibitory and cancer cell cytotoxic activities, but possible preclinical development of this anhydride has been limited thus far by its toxicity. Thus, several synthetic derivatives of cantharidin have been prepared, of which some compounds exhibit improved antitumor potential and may have use as lead compounds. In the present review, the potential antitumor activity, structure-activity relationships, and development of cantharidin-based anticancer drug conjugates are summarized, with protein phosphatase-related and other types of mechanisms of action discussed. Protein phosphatases play a key role in the tumor microenvironment, and thus described herein is also the potential for developing new tumor microenvironment-targeted cancer chemotherapeutic agents, based on cantharidin and its naturally occurring analogues and synthetic derivatives.
Collapse
|
8
|
Yu Z, Li L, Wang C, He H, Liu G, Ma H, Pang L, Jiang M, Lu Q, Li P, Qi H. Cantharidin Induces Apoptosis and Promotes Differentiation of AML Cells Through Nuclear Receptor Nur77-Mediated Signaling Pathway. Front Pharmacol 2020; 11:1321. [PMID: 32982739 PMCID: PMC7485522 DOI: 10.3389/fphar.2020.01321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by uncontrolled proliferation and accumulation of myeloblasts in the bone marrow (BM), blood, and other organs. The nuclear receptors Nur77 is a common feature in leukemic blasts and has emerged as a key therapeutic target for AML. Cantharidin (CTD), a main medicinal component of Mylabris (blister beetle), exerts an anticancer effect in multiple types of cancer cells. Purpose This study aims to characterize the anti-AML activity of CTD in vitro and in vivo and explore the potential role of Nur77 signaling pathway. Study Design/Methods The inhibition of CTD on cell viability was performed in different AML cells, and then the inhibition of CTD on proliferation and colony formation was detected in HL-60 cells. Induction of apoptosis and promotion of differentiation by CTD were further determined. Then, the potential role of Nur77 signaling pathway was assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. Results In our study, CTD exhibited potent inhibition on cell viability and colony formation ability of AML cells. Moreover, CTD significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. Meanwhile, CTD promoted the cleavage of caspases 8, 3 and PARP in HL-60 cells. Furthermore, CTD obviously suppressed the proliferation and induced the cell cycle arrest of HL-60 cells at G2/M phase. Meanwhile, CTD effectively promoted the differentiation of HL-60 cells. Notably, CTD transiently induced the expression of Nur77 protein. Interestingly, CTD promoted Nur77 translocation from the nucleus to the mitochondria and enhanced the interaction between Nur77 and Bcl-2, resulting in the exposure of the BH3 domain of Bcl-2, which is critical for the conversion of Bcl-2 from an antiapoptotic to a proapoptotic protein. Importantly, silencing of Nur77 attenuated CTD-induced apoptosis, reversed CTD-mediated cell cycle arrest and differentiation of HL-60 cells. Additionally, CTD also exhibited an antileukemic effect in NOD/SCID mice with the injection of HL-60 cells into the tail vein. Conclusions Our studies suggest that Nur77-mediated signaling pathway may play a critical role in the induction of apoptosis and promotion of differentiation by CTD on AML cells.
Collapse
Affiliation(s)
- Zanyang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lei Pang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Qianwei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Salucci S, Battistelli M, Burattini S, Sbrana F, Falcieri E. Holotomographic microscopy: A new approach to detect apoptotic cell features. Microsc Res Tech 2020; 83:1464-1470. [PMID: 32681811 DOI: 10.1002/jemt.23539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Holotomographic (HT) microscopy, combines two techniques, holography and tomography, and, in this way, it allows to quantitatively and noninvasively investigate cells and thin tissue slices, by obtaining three-dimensional (3D) images and by monitoring inner morphological changes. HT has indeed two significant advantages: it is label-free and low-energy light passes through the specimen with minimal perturbation. Using quantitative phase imaging with optical diffraction tomography, it can produce 3D images by measuring the refraction index (RI). Therefore, based on RI values, HT can provide structural and chemical cell information, such as dry mass values, morphological changes, or cellular membrane dynamics. In this study, suspended and adherent culture cells have been processed for HT analyses. Some of them have been treated with known apoptotic drugs or pro-oxidant agents and cell response has been investigated both by conventional microscopic approaches and by HT. The ultrastructural and fluorescence images have been compared to those obtained by HT and their congruence has been discussed, with particular attention to apoptotic cell death and on correlated plasma membrane changes. HT appears a valid approach to further characterize well-known apoptotic features such as cell blebbing, chromatin condensation, micronuclei, and apoptotic bodies. Taken together, our data demonstrate that HT appears suitable to highlight suspended or adherent cell behavior under different conditions. In particular, this technique appears an important new tool to distinguish healthy cells from the apoptotic ones, as well as to monitor outer and inner cell changes in a rapid way and with a noninvasive, label-free, approach.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | | | - Sabrina Burattini
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | | | | |
Collapse
|
10
|
Liu F, Duan C, Zhang J, Li X. Cantharidin‐induced LO2 cell autophagy and apoptosis via endoplasmic reticulum stress pathway in vitro. J Appl Toxicol 2020; 40:1622-1635. [DOI: 10.1002/jat.4022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Liu
- Basic Medical School Zunyi Medical University Zunyi China
| | - Cancan Duan
- Key Lab Basic Pharmacology of Ministry of Education and Joint International Research laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi China
| | - Jianyong Zhang
- Key Lab Basic Pharmacology of Ministry of Education and Joint International Research laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi China
- School of pharmacy Zunyi Medical University Zunyi China
| | - Xiaofei Li
- Basic Medical School Zunyi Medical University Zunyi China
| |
Collapse
|
11
|
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med 2020; 15:55. [PMID: 32514288 PMCID: PMC7260769 DOI: 10.1186/s13020-020-00338-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Norcantharidin (NCTD) is a demethylated derivative of cantharidin, which is an anticancer active ingredient of traditional Chinese medicine, and is currently used clinically as a routine anti-cancer drug in China. Clarifying the anticancer effect and molecular mechanism of NCTD is critical for its clinical application. Here, we summarized the physiological, chemical, pharmacokinetic characteristics and clinical applications of NCTD. Besides, we mainly focus on its potential multi-target anticancer activities and underlying mechanisms, and discuss the problems existing in clinical application and scientific research of NCTD, so as to provide a potential anticancer therapeutic agent for human malignant tumors.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
12
|
Chen YC, Chen PN, Lin CW, Yang WE, Ho YT, Yang SF, Chuang CY. Cantharidic acid induces apoptosis in human nasopharyngeal carcinoma cells through p38-mediated upregulation of caspase activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:619-627. [PMID: 31916385 DOI: 10.1002/tox.22897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Cantharidic acid (CA) is the hydrolysis product of the acid anhydride cantharidin, which is a natural toxin secreted by several species of blister beetles. Several studies have indicated that as an inhibitor of protein phosphatase 2 (PP2A), CA induces apoptosis in various human cancer cells. However, the effect of CA on human nasopharyngeal carcinoma (NPC) cells and the underlying pathways have not been addressed. In our current study, we tested the hypothesis that CA treatment reduces the viability of human NPC cells (HONE-1, NPC-39, and NPC-BM) by inducing apoptosis. Results indicated that CA markedly reduced cell viability, which was revealed by the upregulation of caspase activation in extrinsic and intrinsic apoptosis pathways as well as the upregulation of extracellular-signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase 1/2 (JNK1/2) pathways. Coadministration of a p38 inhibitor (SB203580) with CA abolished the activation of caspase proteins. These findings indicated that CA treatment leads to apoptosis in human NPC cells through the upregulation of caspase activation, mediated particularly by the p38 pathway. Hence, CA is a promising therapeutic agent for human NPC.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Armentano B, Curcio R, Brindisi M, Mancuso R, Rago V, Ziccarelli I, Frattaruolo L, Fiorillo M, Dolce V, Gabriele B, Cappello AR. 5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines 2020; 8:biomedicines8020035. [PMID: 32085547 PMCID: PMC7168333 DOI: 10.3390/biomedicines8020035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use.
Collapse
Affiliation(s)
- Biagio Armentano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| |
Collapse
|
14
|
Zhou H, Liu J, Chen Z. Coronarin D suppresses proliferation, invasion and migration of glioma cells via activating JNK signaling pathway. Pathol Res Pract 2019; 216:152789. [PMID: 31870592 DOI: 10.1016/j.prp.2019.152789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Coronarin D (CD) is one of the primary components of the Hedychium coronarium rhizomes and possesses strong anticancer effects via preventing cell growth in many cancer cells. The study was aimed to explore the molecular mechanisms underlying effects of CD on proliferation, invasion and migration of gliomas cells. Gliomas cell lines U251 was employed for detecting cells viability and proliferation by Cell Counting Kit-8 assay and colony formation assay. In addition, scratch wound healing and transwell assays were performed for the analysis of U251 cells invasion and migration respectively. Furthermore, the expression of p-Akt/Akt, p-p38/p38, p-ERK/ERK, p-JNK/JNK, p-STAT3/STAT3, cyclinE, cyclinD1, CTGF, MMP-2 and MMP-9 were measured by Western blotting. CD could suppress proliferation, invasion and migration of glioma cells and induced reduction of cyclinE, cyclinD1, CTGF, MMP-2 and MMP-9 expression via activating JNK signaling pathway. CD treatment suppressed expression of p-AKT, p38, and ERK and elevated expression of p-JNK in concentration- and time-dependent manners. Moreover, CD significantly induced reduction of phosphorylated STAT3 expression. Exposure of cells to the JNK-specific inhibitor SP600125 reduced the cytotoxicity effects of CD, combination of CD and SP600125 corrected overexpression of phosphorylated JNK and reduction of phosphorylated STAT3. Pretreatment of SP600125 also improves gliomas cells viability and invasion. The results revealed that CD may remarkably suppress gliomas cell growth through JNK and STAT3 signaling. In present study, these findings revealed that CD induces suppression of cell viability in gliomas cells and possesses therapeutic effect on gliomas.
Collapse
Affiliation(s)
- Hongjun Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), PR China
| | - Jiang Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), PR China
| | - Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, PR China.
| |
Collapse
|
15
|
Pathological and therapeutic aspects of matrix metalloproteinases: implications in childhood leukemia. Cancer Metastasis Rev 2019; 38:829-837. [DOI: 10.1007/s10555-019-09828-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action. Nutrients 2019; 11:nu11051010. [PMID: 31058874 PMCID: PMC6567155 DOI: 10.3390/nu11051010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.
Collapse
Affiliation(s)
- Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Minsun Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Woojin Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
17
|
Li H, Tian Y, Li X, Wang B, Zhai D, Bai Y, Dong C, Chao X. Knockdown of IARS2 Inhibited Proliferation of Acute Myeloid Leukemia Cells by Regulating p53/p21/PCNA/eIF4E Pathway. Oncol Res 2019; 27:673-680. [PMID: 30832756 PMCID: PMC7848268 DOI: 10.3727/096504018x15426261956343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IARS2 encodes mitochondrial isoleucine-tRNA synthetase, which mutation may cause multiple diseases. However, the biological function of IARS2 on acute myeloid leukemia (AML) has not yet been identified. In the present study, qRT-PCR was used to determine the expression of IARS2 in K562, THP1, and HL-60 leukemia cells. Additionally the mRNA levels of IARS2 in CD34 cells and AML cells obtained from patients were detected by qRT-PCR. IARS2-shRNA lentiviral vector was established and used to infect acute myeloid leukemia HL-60 cells. qRT-PCR and Western blot analysis were employed to assess the knockdown effect of IARS2. The proliferation rate and cell cycle phase of HL-60 cells after IARS2 knockdown were evaluated by CCK-8 assay and flow cytometry. The PathScan Antibody Array was used to determine the expression of cell cycle-related proteins in HL-60 cells after IARS2 knockdown. The expression of proliferation-related proteins in HL-60 cells after IARS2 knockdown was determined by Western blot analysis. Results showed that IARS2 expression was stable and much higher in HL-60, THP-1, and K562 leukemia cells and AML cells obtained from patients than that of human CD34 cells. Compared with cells of the shCtrl group, IARS2 was markedly knocked down in cells that were transfected with lentivirus encoding shRNA of IARS2 in HL-60 cells (p < 0.05). IARS2 knockdown significantly inhibited the proliferation and induced cycle arrest at the G1 phase in HL-60 cells. Additionally IARS2 knockdown significantly increased the expression of p53 and p21, and decreased the expression of PCNA and eIF4E in HL-60 cells. In conclusion, IARS2 knockdown can inhibit acute myeloid leukemia HL-60 cell proliferation and cause cell cycle arrest at the G1 phase by regulating the p53/p21/PCNA/eIF4E pathways.
Collapse
Affiliation(s)
- Hong Li
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yaning Tian
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Xiang Li
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Bin Wang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Dongzhi Zhai
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yingying Bai
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Changhu Dong
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Xu Chao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| |
Collapse
|
18
|
Qiu L, Xu C, Jiang H, Li W, Tong S, Xia H. Cantharidin Attenuates the Proliferation and Migration of Vascular Smooth Muscle Cells through Suppressing Inflammatory Response. Biol Pharm Bull 2019; 42:34-42. [DOI: 10.1248/bpb.b18-00462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University
| | - Wenjing Li
- Department of Oncology and Hematology, Affiliated Hospital of Changchun University of Chinese Medicine
| | - Suiyang Tong
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University
| |
Collapse
|
19
|
Bonesi M, Brindisi M, Armentano B, Curcio R, Sicari V, Loizzo MR, Cappello MS, Bedini G, Peruzzi L, Tundis R. Exploring the anti-proliferative, pro-apoptotic, and antioxidant properties of Santolina corsica Jord. & Fourr. (Asteraceae). Biomed Pharmacother 2018; 107:967-978. [DOI: 10.1016/j.biopha.2018.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023] Open
|
20
|
Lin HW, Hsieh MJ, Yeh CB, Hsueh KC, Hsieh YH, Yang SF. Coronarin D induces apoptotic cell death through the JNK pathway in human hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2018; 33:946-954. [PMID: 29968959 DOI: 10.1002/tox.22579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Coronarin D, a diterpene derived from the rhizomes of Hedychium coronarium, has been used to treat inflammatory diseases. Coronarin D can exert strong anticancer effects through cell growth prevention and cell cycle arrest in many cancer cells. In this study, we investigated the molecular mechanism through which coronarin D suppresses cell proliferation and triggers cell death in human hepatocellular carcinoma (HCC) cells. Treatment of Huh7 and Sk-hep-1 cells with coronarin D resulted in a significantly increased loss of mitochondrial membrane potential, leading to the cleavage and activation of caspase-9, caspase-8, and caspase-3 and changes in Bax, Bcl-2, and Bcl-xL protein levels. Coronarin D significantly induced autophagy by increasing the expression of Beclin-1 and LC3-II and reducing the expression of p62. Moreover, Huh7 and Sk-hep-1 cells exposed to coronarin D had decreased expression of phosphorylated AKT, p38, and ERK and increased expression of phosphorylated JNK. Exposure of cells to the JNK-specific inhibitor SP600125 attenuated the apoptotic effects of coronarin D. Taken together, this is the first study to report that coronarin D may effectively inhibit cell growth through apoptosis. We have provided evidence indicating that coronarin D induces cell death through the upregulation of JNK mitogen-activated protein kinases in human HCC cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Chun Hsueh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Tungs' Taichung MetroHarbour Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|