1
|
Mashayekhi-Sardoo H, Rezaee R, Riahi-Zanjani B, Karimi G. Alleviation of microcystin-leucine arginine -induced hepatotoxicity: An updated overview. Toxicon 2024; 243:107715. [PMID: 38636613 DOI: 10.1016/j.toxicon.2024.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Contamination of surface waters is a major health threat for all living creatures. Some types of blue-green algae that naturally occur in fresh water, are able to produce various toxins, like Microcystins (MCs). Microcystin-leucine arginine (MC-LR) produced by Microcystis aeruginosa is the most toxic and abundant isoforms of MCs, and it causes hepatotoxicity. The present article reviews preclinical experiments examined different treatments, including herbal derivatives, dietary supplements and drugs against MC-LR hepatotoxicity. METHODS We searched scientific databases Web of Science, Embase, Medline (PubMed), Scopus, and Google Scholar using relevant keywords to find suitable studies until November 2023. RESULTS MC-LR through Organic anion transporting polypeptide superfamily transporters (OATPs) penetrates and accumulates in hepatocytes, and it inhibits protein phosphatases (PP1 and PP2A). Consequently, MC-LR disturbs many signaling pathways and induces oxidative stress thus damages cellular macromolecules. Some protective agents, especially plants rich in flavonoids, and natural supplements, as well as chemoprotectants were shown to diminish MC-LR hepatotoxicity. CONCLUSION The reviewed agents through blocking the OATP transporters (nontoxic nostocyclopeptide-M1, captopril, and naringin), then inhibition of MC-LR uptake (naringin, rifampin, cyclosporin-A, silymarin and captopril), and finally at restoration of PPAse activity (silybin, quercetin, morin, naringin, rifampin, captopril, azo dyes) exert hepatoprotective effect against MC-LR.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazard Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhu L, Cao P, Yang S, Lin F, Wang J. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115651. [PMID: 37913581 DOI: 10.1016/j.ecoenv.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingping Cao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Kim JE, Lee DS, Kim TH, Park H, Kang TC. Distinct Roles of CK2- and AKT-Mediated NF-κB Phosphorylations in Clasmatodendrosis (Autophagic Astroglial Death) within the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12051020. [PMID: 37237886 DOI: 10.3390/antiox12051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The downregulation of glutathione peroxidase-1 (GPx1) plays a role in clasmatodendrosis (an autophagic astroglial death) in the hippocampus of chronic epilepsy rats. Furthermore, N-acetylcysteine (NAC, a GSH precursor) restores GPx1 expression in clasmatodendritic astrocytes and alleviates this autophagic astroglial death, independent of nuclear factor erythroid-2-related factor 2 (Nrf2) activity. However, the regulatory signal pathways of these phenomena have not been fully explored. In the present study, NAC attenuated clasmatodendrosis by alleviating GPx1 downregulation, casein kinase 2 (CK2)-mediated nuclear factor-κB (NF-κB) serine (S) 529 and AKT-mediated NF-κB S536 phosphorylations. 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective CK2 inhibitor) relieved clasmatodendritic degeneration and GPx1 downregulation concomitant with the decreased NF-κB S529 and AKT S473 phosphorylations. In contrast, AKT inhibition by 3-chloroacetyl-indole (3CAI) ameliorated clasmatodendrosis and NF-κB S536 phosphorylation, while it did not affect GPx1 downregulation and CK2 tyrosine (Y) 255 and NF-κB S529 phosphorylations. Therefore, these findings suggest that seizure-induced oxidative stress may diminish GPx1 expression by increasing CK2-mediated NF-κB S529 phosphorylation, which would subsequently enhance AKT-mediated NF-κB S536 phosphorylation leading to autophagic astroglial degeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Shin EJ, Nguyen BT, Sharma N, Tran NKC, Nguyen YND, Hwang Y, Park JH, Nah SY, Ko SK, Byun JK, Lee Y, Kim DJ, Jeong JH, Kim HC. Ginsenoside Re mitigates memory impairments in aged GPx-1 KO mice by inhibiting the interplay between PAFR, NFκB, and microgliosis in the hippocampus. Food Chem Toxicol 2023; 173:113627. [PMID: 36682417 DOI: 10.1016/j.fct.2023.113627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Tran NKC, Nguyen YND, Kim DJ, Wie MB, Lee Y, Byun JK, Ko SK, Nah SY, Kim HC. Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
6
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
7
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Nah SY, Ko SK, Byun JK, Lee Y, Lei XG, Kim DJ, Nabeshima T, Kim HC. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 2022; 189:2-19. [PMID: 35840016 DOI: 10.1016/j.freeradbiomed.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.
Collapse
Affiliation(s)
- Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Kim JE, Lee DS, Kim TH, Kang TC. Glutathione Regulates GPx1 Expression during CA1 Neuronal Death and Clasmatodendrosis in the Rat Hippocampus following Status Epilepticus. Antioxidants (Basel) 2022; 11:antiox11040756. [PMID: 35453441 PMCID: PMC9024994 DOI: 10.3390/antiox11040756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glutathione peroxidase-1 (GPx1) catalyze the reduction of H2O2 by using glutathione (GSH) as a cofactor. However, the profiles of altered GPx1 expression in response to status epilepticus (SE) have not been fully explored. In the present study, GPx1 expression was transiently decreased in dentate granule cells, while it was temporarily enhanced and subsequently reduced in CA1 neurons following SE. GPx1 expression was also transiently declined in CA1 astrocytes (within the stratum radiatum) following SE. However, it was elevated in reactive CA1 astrocytes, but not in clasmatodendritic CA1 astrocytes, in chronic epilepsy rats. Under physiological condition, L-buthionine sulfoximine (BSO, an inducer of GSH depletion) increased GPx1 expression in CA1 neurons but decreased it in CA1 astrocytes. However, N-acetylcysteine (NAC, an inducer of GSH synthesis) did not influence GPx1 expression in these cell populations. Following SE, BSO aggravated CA1 neuronal death, concomitant with reduced GPx1 expression. Further. BSO also lowered GPx1 expression in CA1 astrocytes. NAC effectively prevented neuronal death and GPx1 downregulation in CA1 neurons, and restored GPx1 expression to the control level in CA1 astrocytes. In chronic epilepsy rats, BSO reduced GPx1 intensity and exacerbated clasmatodendritic degeneration in CA1 astrocytes. In contrast, NAC restored GPx1 expression in clasmatodendritic astrocytes and ameliorated this autophagic astroglial death. To the best of our knowledge, our findings report, for the first time, the spatiotemporal profiles of altered GPx1 expression in the rat hippocampus following SE, and suggest GSH-mediated GPx1 regulation, which may affect SE-induced neuronal death and autophagic astroglial degeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. and T.-C.K.)
| | | | | | - Tae-Cheon Kang
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. and T.-C.K.)
| |
Collapse
|
9
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, Nabeshima T, Bing G, Jeong JH, Kim HC. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem Toxicol 2021; 154:112313. [PMID: 34082047 DOI: 10.1016/j.fct.2021.112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Chu Xuan Duong
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Guoying Bing
- Anatomy and Neurobiology, University of Kentucky Medical Center, Medical Center MN208 800 Rose Strees, Lexington, KY, 40536, USA
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea.
| |
Collapse
|
11
|
Zeng H, Tan Y, Wang L, Xiang M, Zhou Z, Chen JA, Wang J, Zhang R, Tian Y, Luo J, Huang Y, Lv C, Shu W, Qiu Z. Association of serum microcystin levels with neurobehavior of school-age children in rural area of Southwest China: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111990. [PMID: 33524912 DOI: 10.1016/j.ecoenv.2021.111990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
To investigate whether microcystin-LR (MC-LR) influences children's cognitive function and memory ability, we measured serum MC-LR and whole blood lead levels in 697 primary students, and collected their academic and neurobehavioral test scores. The median of serum MC-LR levels was 0.80 µg/L (the value below the limit of detection to 1.67 µg/L). The shapes of the associations of serum MC-LR levels (cut-point: 0.95 µg/L) with scores on academic achievements, digit symbol substitution test and long-term memory test were parabolic curves. Logistic regression analysis showed that MC-LR at concentrations of 0.80-0.95 µg/L was associated with the increased probability of higher achievements on academic achievements [odds ratio (OR) = 2.20, 95% confidence interval (CI): 1.28-3.79], and also with scores on digit symbol substitution test (OR = 1.73, 95% CI: 1.05-2.86), overall memory quotient (OR = 2.27, 95% CI: 1.21-4.26), long-term memory (OR = 1.85, 95% CI: 1.01-3.38) and short-term memory (OR = 2.13, 95% CI: 1.14-3.98) after adjustment for confounding factors. Antagonism of MC-LR and lead on long-term memory was observed (synergism index = 0.15, 95% CI: 0.03-0.74). In conclusion, serum MC-LR at concentrations of 0.80-0.95 µg/L was positively associated with higher scores on cognitive and neurobehavioral tests, and antagonism between MC-LR at concentrations of 0.80-1.67 µg/L and lead exposure was obviously observed on long-term memory in children. Concerning that MC-LR is a neurotoxin at high doses, our observation is interesting and need further investigation.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Menglong Xiang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-An Chen
- Department of Health Education, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renping Zhang
- The Center for Disease Control and Prevention in Fuling District, Chongqing, China
| | - Yingqiao Tian
- The Center for Disease Control and Prevention in Fuling District, Chongqing, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Lv
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
12
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
13
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Mai HN, Pham DT, Chung YH, Sharma N, Cheong JH, Yun J, Nah SY, Jeong JH, Gen Lei X, Shin EJ, Nabeshima T, Kim HC. Glutathione peroxidase-1 knockout potentiates behavioral sensitization induced by cocaine in mice via σ-1 receptor-mediated ERK signaling: A comparison with the case of glutathione peroxidase-1 overexpressing transgenic mice. Brain Res Bull 2020; 164:107-120. [PMID: 32822804 DOI: 10.1016/j.brainresbull.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
We demonstrated that the gene of glutathione peroxidase-1 (GPx-1), a major antioxidant enzyme, is a potential protectant against the neurotoxicity and conditioned place preference induced by cocaine. Because the sigma (σ)-1 receptor is implicated in cocaine-induced drug dependence, we investigated whether the GPx-1 gene modulates the σ-1 receptor in the behavioral sensitization induced by cocaine. Cocaine-induced behavioral sensitization was more pronounced in GPx-1 knockout (KO) than wild-type (WT) mice and was less pronounced in GPx-1 overexpressing transgenic (GPx-1 TG) than non-TG mice. Cocaine treatment significantly enhanced the oxidative burden and reduced the GSH levels in the striatum of WT, GPx-1 KO, and non-TG mice but not in that of GPx-1 TG mice. In addition, cocaine significantly increased the nuclear translocation, its DNA binding activity of nuclear factor erythroid-2-related factor 2 (Nrf2) as well as the mRNA expression of γ-glutamylcysteine (GCL). The genetic depletion of GPx-1 inhibited the Nrf2-related glutathione system, whereas the genetic overexpression of GPx-1 activated this system against behavioral sensitization. BD1047, a σ-1 receptor antagonist, and U0126, an ERK inhibitor significantly induced the Nrf2-related antioxidant potential against behavioral sensitization. Unlike BD1047, U0126 did not affect the cocaine-induced σ-1 receptor immunoreactivity, suggesting that the σ-1 receptor is an upstream molecule for ERK signaling. Importantly, BD1047 and U0126 failed to affect the σ-1 receptor immunoreactivity and ERK phosphorylation induced by cocaine in GPx-1 TG mice. Our results suggest that GPx-1 is a critical mediator for the attenuation of cocaine-induced behavioral sensitization via modulating σ-1 receptor-mediated ERK activation by the induction of the Nrf2-related system.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungbuk, 28160, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Seminotti B, Amaral AU, Grings M, Ribeiro CAJ, Leipnitz G, Wajner M. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh -/-) Mice to Oxidative Stress. Neurotox Res 2020; 38:1024-1036. [PMID: 33001399 DOI: 10.1007/s12640-020-00291-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
We investigated redox homeostasis in cerebral and peripheral tissues of wild type (WT) and glutaryl-CoA dehydrogenase knockout mice (Gcdh-/-) submitted to inflammation induced by lipopolysaccharide (LPS) since patients with glutaric aciduria type I (GA I) manifest acute encephalopathy during catabolic events triggered by inflammation. WT and Gcdh-/- mice fed a low (0.9%) or high (4.7%) Lys chow were euthanized 4 h after LPS intraperitoneal injection. Cerebral cortex of Lys-restricted Gcdh-/- animals presented no alterations of redox homeostasis, whereas those fed a high Lys chow showed increased malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity, compared to WT mice. Furthermore, Gcdh-/- mice receiving low Lys and injected with LPS presented elevated MDA levels and decreased reduced glutathione (GSH) concentrations, glutathione peroxidase (GPx), and glutathione reductase (GR) activities in cerebral cortex. LPS administration also decreased GSH values, as well as GPx and GR activities in cerebral cortex of Gcdh-/- mice receiving Lys overload. Further experiments performed in WT and Gcdh-/- mice injected with LPS and receiving either a low or high Lys chow revealed increased MDA levels and decreased GSH concentrations in cerebral cortex and striatum, but not in hippocampus, liver and heart of Gcdh-/- mice, suggesting a selective vulnerability of these cerebral structures to oxidative stress during an inflammatory process. LPS administration also increased S100B and NF-κF protein levels in brain of Gcdh-/- mice receiving high Lys. These data support the hypothesis that low Lys diet is beneficial in GA I by preventing redox imbalance, whereas a high Lys diet or systemic inflammation per se or combined induce oxidative stress in striatum and cerebral cortex that are mainly damaged in this disorder.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| |
Collapse
|
16
|
Hinojosa MG, Gutiérrez-Praena D, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Neurotoxicity induced by microcystins and cylindrospermopsin: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:547-565. [PMID: 30856566 DOI: 10.1016/j.scitotenv.2019.02.426] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 05/26/2023]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the most frequent toxins produced by cyanobacteria. These toxic secondary metabolites are classified as hepatotoxins and cytotoxin, respectively. Furthermore, both may present the ability to induce damage to the nervous system. In this sense, there are many studies manifesting the potential of MCs to cause neurotoxicity both in vitro and in vivo, due to their probable capacity to cross the blood-brain-barrier through organic anion transporting polypeptides. Moreover, the presence of MCs has been detected in brain of several experimental models. Among the neurological effects, histopathological brain changes, deregulation of biochemical parameters in brain (production of oxidative stress and inhibition of protein phosphatases) and behavioral alterations have been described. It is noteworthy that minority variants such as MC-LF and -LW have demonstrated to exert higher neurotoxic effects compared to the most studied congener, MC-LR. By contrast, the available studies concerning CYN-neurotoxic effects are very scarce, mostly showing inflammation and apoptosis in neural murine cell lines, oxidative stress, and alteration of the acetylcholinesterase activity in vivo. However, more studies are required in order to clarify the neurotoxic potential of both toxins, as well as their possible contribution to neurodegenerative diseases.
Collapse
Affiliation(s)
- M G Hinojosa
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - D Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - R Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
17
|
Li P, Ge M, Yang L, Liu J. Metal coordination-functionalized Au–Ag bimetal SERS nanoprobe for sensitive detection of glutathione. Analyst 2019; 144:421-425. [DOI: 10.1039/c8an02206b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neocuproine-Cu functionalized Au–Ag nanoparticles as nanoprobe for detection of glutathione based on the SERS spectra changing from Neocuproine-CuII to Neocuproine-CuI.
Collapse
Affiliation(s)
- Pan Li
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Anhui
- China
| | - Meihong Ge
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Anhui
- China
- Department of Chemistry
| | - Liangbao Yang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Anhui
- China
- Department of Chemistry
| | - Jinhuai Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Anhui
- China
| |
Collapse
|