1
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2025; 45:23-46. [PMID: 38740968 PMCID: PMC11634566 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Nicholas D. Kim
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Collette Bromhead
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Penelope Truman
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Marlena C. Kruger
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Beth L. Mallard
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| |
Collapse
|
2
|
Li P, Qu R, Li M, Sheng P, Jin L, Huang X, Xu ZZ. Impacts of food additives on gut microbiota and host health. Food Res Int 2024; 196:114998. [PMID: 39614468 DOI: 10.1016/j.foodres.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 12/01/2024]
Abstract
The rapidly expanding food industry necessitates the use of food additives to achieve specific purposes. However, this raises new concerns in food safety due to the reported negative impacts of food additives on gut microbiota and host health, particularly in the context of continuous worldwide urbanization. This review summarizes the existing studies on the effects of different types of commonly used food additives on gut microbiota alteration, intestinal barrier disruption, metabolism disorder, and neurobehavior changes. These food additives, including emulsifiers, low-calorie sweeteners, inorganic nanoparticles, and preservatives, have been found to exert multifaceted impacts, primarily adverse effects, highlighting the potential risks associated with food additive exposure in various chronic diseases. Further research is warranted to elucidate the specific mechanisms, determine the relevance of these findings to humans, and clarify the suitability of certain food additives for vulnerable populations. It is crucial to note that natural food additives are not inherently superior to synthetic ones in terms of safety. Rigorous evaluation is still warranted before their widespread application in the food industry. Additionally, the potential synergistic effects of commonly used food additives combination in specific food categories on gut microbiota and host metabolism should be investigated to understand their relevance in real-world scenarios.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Ru Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ping Sheng
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Liang Jin
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Dong R, Li L, Chang H, Song G, Liu S. Study on the mechanisms of defective spermatogenesis induced by TiO 2 NPs based on 3D blood-testis barrier microfluidic chip. Toxicology 2024; 507:153888. [PMID: 39019315 DOI: 10.1016/j.tox.2024.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Li Li
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
5
|
Bruno L, Evariste L, Houdeau E. Dysregulation along the gut microbiota-immune system axis after oral exposure to titanium dioxide nanoparticles: A possible environmental factor promoting obesity-related metabolic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121795. [PMID: 37187281 DOI: 10.1016/j.envpol.2023.121795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Food additives are one major hallmark of ultra-processed food in the Western-diet, a food habit often associated with metabolic disorders. Among these additives, the whitener and opacifying agent titanium dioxide (TiO2) raises public health issues due to the ability of TiO2 nanoparticles (NPs) to cross biological barriers and accumulate in different systemic organs like spleen, liver and pancreas. However before their systemic passage, the biocidal properties of TiO2 NPs may alter the composition and activity of the gut microbiota, which play a crucial role for the development and maintenance of immune functions. Once absorbed, TiO2 NPs may further interact with immune intestinal cells involved in gut microbiota regulation. Since obesity-related metabolic diseases such as diabetes are associated with alterations in the microbiota-immune system axis, this raises questions about the possible involvement of long-term exposure to food-grade TiO2 in the development or worsening of these diseases. The current purpose is to review the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 NPs may increase the susceptibility to develop obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Lamas Bruno
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
6
|
Song F, Li S, Dai X, Yang F, Cao Y. Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas. Mol Omics 2023; 19:150-161. [PMID: 36538054 DOI: 10.1039/d1mo00470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although titanium (Ti)-based nanomaterials (NMs) were traditionally considered as biologically inert materials, it was recently reported that Ti-based NMs induce adverse vascular effects by inhibiting Kruppel-like factor 2 (KLF2) and/or KLF4, vasoprotective KLFs with well-documented regulatory activity in NO signaling. However, the potential roles of other KLFs are not clear. KLF6 was recently identified as an important KLF involved in regulating endothelial dysfunction, inflammation, and angiogenesis, therefore, this study investigated the influence of titanate nanofibers (TiNFs) on KLF6-mediated events. Ingenuity pathway analysis (IPA) showed that TiNFs altered the expression of a panel of KLF6-related genes: KLF6-mediated gene ontology (GO) terms were altered, categories including cytokine-mediated signaling pathways, transcription factor (TF) functions and membrane-bound organelles. Additionally, RT-PCR confirmed that TiNFs increased KLF6 activating transcription factor 3 (ATF3), a TF involved in endoplasmic reticulum (ER) stress, and ELISA confirmed the increase of soluble monocyte chemotactic protein 1 (sMCP-1), a KLF6-related inflammatory cytokine. Interestingly, the activation of klf6, atf3 and C-C motif chemokine ligand 2 (ccl2; mcp-1 encoding gene) was observed in aortas of mice following one-time intravenous injection but not intratracheal instillation of TiNFs (100 μg per mouse), indicating a need for direct contact with NMs to activate klf6-mediated pathways in vivo. In endothelial cells, KLF6 knockdown inhibited the expression of ATF3 but not CCL2, suggesting the regulatory role of KLF6 in ATF3 expression. Overall, this study uncovered a previously unknown role of KLF6 in TiNF-induced vascular effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Mohammadparast V, Mallard BL. The effect and underlying mechanisms of titanium dioxide nanoparticles on glucose homeostasis: A literature review. J Appl Toxicol 2023; 43:22-31. [PMID: 35287244 PMCID: PMC10078690 DOI: 10.1002/jat.4318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Titanium dioxide (TiO2 ) is used extensively as a white pigment in the food industry, personal care, and a variety of products of everyday use. Although TiO2 has been categorized as a bioinert material, recent evidence has demonstrated different toxicity profiles of TiO2 nanoparticles (NPs) and a potential health risk to humans. Studies indicated that titanium dioxide enters the systemic circulation and accumulates in the lungs, liver, kidneys, spleen, heart, and central nervous system and may cause oxidative stress and tissue damage in these vital organs. Recently, some studies have raised concerns about the possible detrimental effects of TiO2 NPs on glucose homeostasis. However, the findings should be interpreted with caution due to the methodological issues. This article aims to evaluate current evidence regarding the effects of TiO2 NPs on glucose homeostasis, including possible underlying mechanisms. Furthermore, the limitations of current studies are discussed, which may provide a comprehensive understanding and new perspectives for future studies in this field.
Collapse
Affiliation(s)
| | - Beth L Mallard
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
8
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
9
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
10
|
Amorim MJB, Gomes SIL, Bicho RCS, Scott-Fordsmand JJ. On virus and nanomaterials - Lessons learned from the innate immune system - ACE activation in the invertebrate model Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129173. [PMID: 35739709 PMCID: PMC9116975 DOI: 10.1016/j.jhazmat.2022.129173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/03/2023]
Abstract
Current human research on COVID-19 - SARS-CoV-2 (Severe Acute Respiratory Syndrome-Corona Virus) showed that ACE2 (Angiotensin Converting Enzyme 2) is a functional receptor to which the spike proteins attach. Invertebrates have been exposed to a wide array of threats for millennia and their immune system has evolved to deal with these efficiently. The annelid Enchytraeus crypticus, a standard ecotoxicological species, is an invertebrate species where extensive mechanisms of response studies are available, covering all levels from gene to population responses. Nanomaterials (NMs) are often perceived as invaders (e.g. virus) and can enter the cell covered by a corona, triggering similar responses. We created a database on E. crypticus ACE gene expression, aiming to analyse the potential knowledge transfer between invertebrates and vertebrates. Total exposure experiments sum 87 stress conditions for 18 different nanomaterials (NMs). ACE expression following TiO2 NM exposure was clearly different from other NMs showing a clear (6-7 fold) ACE down-regulation, not observed for any other NMs. Other NMs, notably Ag NMs, and to some extent Cu NMs, caused ACE up-regulation (up to 4 fold). The extensive knowledge from response to NMs can support the immuno-research community, especially to develop therapies for virus that trigger the innate immune system.
Collapse
Affiliation(s)
- M J B Amorim
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - S I L Gomes
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - R C S Bicho
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J J Scott-Fordsmand
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle, DK-8000, Aarhus, Denmark
| |
Collapse
|
11
|
Li B, Zhang T, Tang M. Toxicity mechanism of nanomaterials: Focus on endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155417. [PMID: 35472346 DOI: 10.1016/j.scitotenv.2022.155417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Over the years, although the broad application of nanomaterials has not brought convenience to people's life, growing concern surrounds their safety. Recently, much emphasis has been placed on exploring the toxicity mechanism of nanoparticles. Currently established toxic mechanisms include oxidative stress, inflammatory response, autophagy, and DNA damage. In recent years, endoplasmic reticulum stress (ERS) has gained widespread attention as another toxic mechanism of nanomaterials. It is widely acknowledged that the endoplasmic reticulum (ER) is an important site for protein synthesis, and lipids and Ca+ storage, playing an esseential role in the normal operation of the body functions. When the body's internal environment is damaged, the structure and function of the endoplasmic reticulum are destroyed, leading to a series of biological reactions called endoplasmic reticulum stress (ERS.) This paper reviews the mechanism of ERS in nanomaterial-associated toxicity. The process of ERS and its related unfolded protein response were briefly introduced, summarizing the factors affecting the nanoparticle ability to induce ERS and expounding on the changes of ER morphology after exposure to nanoparticles. Finally, the specific role and molecular mechanism of ERS under the action of different nanoparticles were comprehensively analyzed, including the relationship between ERS and inflammation, oxidative stress, lipid metabolism and apoptosis. This review provides a foothold for future studies on the toxic mechanism of nanoparticles, and provides novel insights into the safe application of nanoparticles and the treatment of diseases.
Collapse
Affiliation(s)
- Binjing Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
12
|
Ahmad M, Khan MKA, Shahzad K, Ahmad N, Parveen M, Khan MS. Teratological effects of titanium dioxide nanoparticles in mice embryo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40724-40733. [PMID: 35083667 DOI: 10.1007/s11356-021-18237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles have numerous applications related to human uses. Titanium dioxide nanoparticles (TiO2-NPs) are extensively used in many daily utilities. The small size particles and larger uses in the industry have led them to become a threatening entity to the living organisms. The unchecked use and dumping in the environment poses a significant toxicological risk to the developing mammalian embryo. The present study was conducted to determine the developmental toxicity and teratogenic effects of TiO2-NPs in murine embryos. The TiO2-NPs were introduced intravenously into pregnant mice graded as T1 (0.52 mg/g BW), T2 (0.7 mg/g BW), and T3 (1.05 mg/g BW) along with control with no dose administration T0 (0.00 mg/g BW). Results recorded after 14 days were resorbed fetuses, dropped wrist, hemorrhages, sacral hygromas, and kinked tails. It was concluded that the exposure of TiO2-NPs in mentioned doses from any source may lead to deleterious effects on the development of an embryo.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | | | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari Campus, Vehari, Pakistan
| | - Munazza Parveen
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
- Department of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| | | |
Collapse
|
13
|
Cheng W, Xu X, Lang Y, Cheng Z, Rizwan M, Tang X, Xie L, Liu Y, Xu H, Liu Y. Anatase and Rutile TiO 2 Nanoparticles Lead Effective Bone Damage in Young Rat Model via the IGF-1 Signaling Pathway. Int J Nanomedicine 2021; 16:7233-7247. [PMID: 34737562 PMCID: PMC8558833 DOI: 10.2147/ijn.s333632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate the effects of anatase and rutile TiO2 nanoparticles (NPs) on the growth and development of bones in young rats and explore their possible mechanisms. METHODS Three-week-old male rats were orally administered anatase TiO2 NPs and rutile TiO2 NPs for 28 days. The indicators of rat growth and development, liver function, bone metabolism, and insulin-like growth factor-1 (IGF-1) levels were evaluated. Micro-computed tomography (micro-CT) and immunohistochemistry were used to evaluate the tibia. RESULTS No significant differences were observed among growth and development indicators in young rats. Significant differences were found in IGF-1 levels, phosphorus levels, and liver function. Micro-CT revealed osteoporosis in the bones. The micro-CT data supported the same result. Bone immunohistochemistry results showed that the expression of osteoprotegerin (OPG) was decreased and the expression of receptor activator of nuclear factor-κB ligand (RANKL) and cathepsin K (CTSK) was increased. CONCLUSION This study demonstrated that TiO2 NPs can damage bones via the IGF-1/OPG/RANKL/CTSK pathway in young rats. Furthermore, rutile TiO2 NPs damaged the bones more seriously than anatase TiO2 NPs.
Collapse
Affiliation(s)
- Wenshu Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Xinyue Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Yuanyuan Lang
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Zugen Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Mohammad Rizwan
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Xiaomin Tang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Lixin Xie
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi Province, 330047, People’s Republic of China
| | - Yang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| |
Collapse
|
14
|
Protective Effect of Lactobacillus rhamnosus GG on TiO 2 Nanoparticles-Induced Oxidative Stress Damage in the Liver of Young Rats. NANOMATERIALS 2021; 11:nano11030803. [PMID: 33801059 PMCID: PMC8004042 DOI: 10.3390/nano11030803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
The potential toxicity of titanium dioxide nanoparticles (TiO2 NPs) to mammals has become a widespread concern. Young individuals exposed to TiO2 NPs have a higher risk than adults. In this study, the protective effects of Lactobacillus rhamnosus GG (LGG) on liver toxicity in young rats induced by TiO2 NPs were explored. Results show that the four-week-old rats that underwent LGG after the oral intake of TiO2 NPs could prevent weight loss, reduce hematological indicators (WBC and NEUT) and serum biochemical indicators (AST, ALT, AST/ALT, and ALP). Moreover, it alleviated the pathological damage of the liver (as indicated by the disordered hepatocytes, more eosinophilic, ballooning degeneration, and accompany with blood cells), but it did not reduce the Ti contents in the liver. In addition, RT-qPCR results indicated that LGG restored the expression of anti-oxidative stress-related genes, such as SOD1, SOD2, CAT, HO-1, GSH, GCLC, and GCLM in the liver. In summary, the hepatotoxicity of TiO2 NPs in young rats is closely related to oxidative stress, and the antioxidant effect of LGG might protect the harmful effects caused by TiO2 NPs.
Collapse
|
15
|
Bischoff NS, de Kok TM, Sijm DT, van Breda SG, Briedé JJ, Castenmiller JJ, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020; 22:ijms22010207. [PMID: 33379217 PMCID: PMC7795714 DOI: 10.3390/ijms22010207] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Correspondence:
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Dick T.H.M. Sijm
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacqueline J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Antoon Opperhuizen
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonóma de México, Mexico City 54090, Mexico;
| | - Hubert Dirven
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - David Gott
- Food Standard Agency, London SW1H9EX, UK;
| | - Eric Houdeau
- French National Research Institute for Agriculture, Food and Environment (INRAE), 75338 Paris, France;
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Morten Poulsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Henk van Loveren
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| |
Collapse
|
16
|
Brand W, Peters RJB, Braakhuis HM, Maślankiewicz L, Oomen AG. Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology 2020; 14:985-1007. [PMID: 32619159 DOI: 10.1080/17435390.2020.1778809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies reported adverse liver effects and intestinal tumor formation after oral exposure to titanium dioxide (TiO2). Other oral toxicological studies, however, observed no effects on liver and intestine, despite prolonged exposure and/or high doses. In the present assessment, we aimed to better understand whether TiO2 can induce such effects at conditions relevant for humans. Therefore, we focused not only on the clinical and histopathological observations, but also used Adverse Outcome Pathways (AOPs) to consider earlier steps (Key Events). In addition, aiming for a more accurate risk assessment, the available information on organ concentrations of Ti (resulting from exposure to TiO2) from oral animal studies was compared to recently reported concentrations found in human postmortem organs. The overview obtained with the AOP approach indicates that TiO2 can trigger a number of key events in liver and intestine: Reactive Oxygen Species (ROS) generation, induction of oxidative stress and inflammation. TiO2 seems to be able to exert these early effects in animal studies at Ti liver concentrations that are only a factor of 30 and 6 times higher than the median and highest liver concentration found in humans, respectively. This confirms earlier conclusions that adverse effects on the liver in humans as a result of (oral) TiO2 exposure cannot be excluded. Data for comparison with Ti levels in human intestinal tissue, spleen and kidney with effect concentrations were too limited to draw firm conclusions. The Ti levels, though, are similar or higher than those found in liver, suggesting these tissues may be relevant too.
Collapse
Affiliation(s)
- Walter Brand
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Hedwig M Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lidka Maślankiewicz
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Agnes G Oomen
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|