1
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
2
|
Qu Z, Yang KD, Luo BH, Zhang F. CAFs-secreted exosomal cricN4BP2L2 promoted colorectal cancer stemness and chemoresistance by interacting with EIF4A3. Exp Cell Res 2022; 418:113266. [PMID: 35752345 DOI: 10.1016/j.yexcr.2022.113266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts secreted exosomes (CAFs-exo) are important for tumor carcinogenesis and chemoresistance, but its underlying mechanism in colorectal cancer (CRC) has not yet been clarified. In this study, we investigated the regulatory mechanism of CAFs-exo cricN4BP2L2 on the proliferation, apoptosis, stemness and chemoresistance of LoVo cells. We found that CAFs-exo promoted the oxaliplatin resistance and stemness of LoVo cells, while inhibited the LoVo cell apoptosis. Moreover, knockdown of cricN4BP2L2 in CAFs-exo inhibited the oxaliplatin resistance and stemness characteristics of LoVo cells. Mechanistically, cricN4BP2L2 regulated PI3K/AKT/mTOR axis by binding to EIF4A3. Rescue experiments proved that CAFs-derived exosomal cricN4BP2L2 promoted CRC cells stemness and oxaliplatin resistance by upregulating EIF4A3. Moreover, in vivo experiments showed that depletion of cricN4BP2L2 suppressed CRC tumorigenesis growth. In conclusion, CAFs-exo cricN4BP2L2 promoted the CRC cells stemness and oxaliplatin resistance through EIF4A3/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zhan Qu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Ke-Da Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Bai-Hua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China.
| |
Collapse
|
3
|
Evaluation of the Effect of Nutritional Intervention on Patients with Nasopharyngeal Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2531671. [PMID: 35310190 PMCID: PMC8933072 DOI: 10.1155/2022/2531671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Aim. The paper aims to combine mathematical statistics to assess the effect of nutritional intervention in the population of nasopharyngeal cancer patients. Methodology. After following the inclusion and exclusion criteria, a total of 120 patients with nasopharyngeal carcinoma were selected. All patients are treated with intensity-modulated radiotherapy (IMRT). The nurse collects relevant clinical treatment data during the radiotherapy of the patient. After the patient’s radiotherapy, the nurse remeasures the patient’s nutritional status indicators. Three months after the completion of radiotherapy, the patient will be reexamined by MRI, and the radiotherapist will assess the patient’s radiosensitivity based on the results of the MRI examination. All the blood biochemical indicators and body measurement indicators were also assessed and coordinated with nasopharyngeal carcinoma patients. This study performs multiple linear regression analysis on treatment-related factors that affect nutritional status during radiotherapy. Results. The experimental results showed that the side effects of radiotherapy are independent influencing factors of nutritional status. Radiotherapy damages the DNA of cells, so that cells cannot continue to divide and grow, and all cells in the treatment area were affected by radiation. The standard radiotherapy treatment is quite long, and the oral cavity, throat, and parotid gland, are all within the irradiation range. In addition to killing the tumor cells, the radiation can also cause certain damage to the surrounding tissues of the tumor. This article takes radiosensitivity as the dependent variable (insensitivity = 0; sensitivity = 1) and takes the nutritional index NI, age, gender, education level, marriage, smoking, chronic disease history, TNM staging, whether the chemotherapy steps are the same or not, GTVnx prescription dose, and the number of radiotherapies as independent variables. AMC, albumin, hemoglobin, serum prealbumin, and transferrin are all correlated with radiosensitivity, which is consistent with the results of most studies. The results of multivariate logistic regression analysis showed that nutritional index (NI) was correlated with the radiosensitivity of nasopharyngeal carcinoma. Conclusion. Finally, this paper concludes that nutritional intervention has a certain effect on the treatment of patients with nasopharyngeal carcinoma.
Collapse
|
4
|
Zhao C, Chen HY, Zhao F, Feng HJ, Su JP. Acylglycerol kinase promotes paclitaxel resistance in nasopharyngeal carcinoma cells by regulating FOXM1 via the JAK2/STAT3 pathway. Cytokine 2021; 148:155595. [PMID: 34116927 DOI: 10.1016/j.cyto.2021.155595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Drug resistance is an important factor that impedes the treatment of nasopharyngeal cancer (NPC). Acylglycerol kinase (AGK) has been found to be overexpressed in NPC and correlates with poor prognosis. Our objective was to demonstrate the effect of AGK on paclitaxel resistance in NPC and determine the underlying mechanisms. METHODS MTT assay was employed to determine the IC50 of paclitaxel in NPC cells after different treatments. Flow cytometry assays were employed to evaluate cell apoptosis. RT-qPCR and Western blot assays were used to detect alterations in mRNA and protein expression, respectively. Luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to determine the relationship between and the regulatory effect of STAT3 on the promoter of FOXM1. RESULTS AGK was elevated in paclitaxel-resistant NPC cells, and knockdown of AGK suppressed the resistance of CNE1-TR and CNE2-TR cells to paclitaxel. Moreover, upregulation of FOXM1 rescued the effects of AGK knockdown. Furthermore, the JAK2/STAT3 signalling pathway was overactivated in CNE1-TR and CNE2-TR cells, and knockdown of AGK suppressed JAK2/STAT3 signalling. STAT3 was verified to bind to and activate the promoter region of FOXM1. An in vivo tumour xenograft assay also verified that AGK knockdown inhibited tumour growth and mitigated paclitaxel resistance by regulating the JAK2/STAT3/FOXM1 axis. CONCLUSION AGK levels were increased in paclitaxel-resistant NPC cells. AGK activates JAK2/STAT3 signalling, thus promoting FOXM1 transcription and eventually enhancing the drug resistance of NPC cells.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Hui-Ying Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Feng Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Hua-Jun Feng
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Ji-Ping Su
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
5
|
Chu B, Hong Z, Zheng X. Acylglycerol Kinase-Targeted Therapies in Oncology. Front Cell Dev Biol 2021; 9:659158. [PMID: 34368119 PMCID: PMC8339474 DOI: 10.3389/fcell.2021.659158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Acylglycerol kinase (AGK) is a recently discovered mitochondrial lipid kinase, and mutation of its gene is the fundamental cause of Sengers syndrome. AGK is not only involved in the stability of lipid metabolism but also closely related to mitochondrial protein transport, glycolysis, and thrombocytopoiesis. Evidence indicates that AGK is an important factor in the occurrence and development of tumors. Specifically, AGK has been identified as an oncogene that partakes in the regulation of tumor cell growth, invasion, metastasis, and drug resistance. The versatility of AGK and its unique role in different types of cancerous and normal cells greatly piqued our interest. We believe that AGK is a promising target for cancer therapy. Therefore, this review summarizes the main research advances concerning AGK, including the discovery of its physiological/pathogenic mechanisms, and provides a reference for the feasible evaluation of AGK as a therapeutic target for human diseases, particularly tumors.
Collapse
Affiliation(s)
- Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenghua Hong
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
6
|
Zheng T, Chen H. Resveratrol ameliorates the glucose uptake and lipid metabolism in gestational diabetes mellitus mice and insulin-resistant adipocytes via miR-23a-3p/NOV axis. Mol Immunol 2021; 137:163-173. [PMID: 34256324 DOI: 10.1016/j.molimm.2021.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Resveratrol improves insulin-resistance (IR) of gestational diabetes mellitus (GDM) mice. Low-expressed miR-23a-3p in diabetes patients regulates IR of adipocytes. Hence, we speculated the effect of Res on GDM mice was realized through regulating miR-23a-3p. METHODS The GDM model was established in mice by high-fat diet, treated with miR-23a-3p antagomiR, and further performed with glucose and insulin tolerance tests. The bodyweight, serum glucose and serum insulin, and the expressions of miR-23a-3p and nephroblastoma overexpressed (NOV) in mouse adipose tissues were detected. MiR-23a-3p target was identified by Starbase and dual-luciferase reporter. Then, an IR adipocyte model was established by dexamethasone-inducing and further treated with Resveratrol or transfected with miR-23a-3p inhibitor or siNOV. The cell glucose intake was detected by radioimmunoassay. The expressions of miR-23a-3p, NOV, Adiponectin, Leptin, p-PI3K, PI3K, p-Akt, and Akt in the adipocytes were determined by qPCR or Western blot. RESULTS Resveratrol decreased bodyweight, glucose level, insulin level, and the expressions of miR-23a-3p and NOV in the GDM mice, which was reversed by miR-23a-3p antagomiR. MiR-23a-3p targeted NOV. Resveratrol increased the glucose intake and the expressions of miR-23a-3p, Adiponectin, Leptin, p-PI3K, and p-Akt, decreased NOV expression in the IR adipocytes. The effect of the miR-23a-3p inhibitor on adipocytes with IR was opposite to Resveratrol, and the effects siNOV was the same as Resveratrol, except for its effect on miR-23a-3p expression. Effect of Res on the adipocytes with IR was counteracted by miR-23a-3p inhibitor whose effect was reversed by siNOV. CONCLUSION Resveratrol ameliorated glucose uptake and lipid metabolism of the GDM mice and adipocytes with IR by regulating miR-23a-3p/NOV axis.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, China
| | - Hainan Chen
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
7
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|