1
|
McMullin DR, Kirkland AK, Rehman I, Kovesi T, Mallach G, Miller JD. Polycyclic aromatic hydrocarbons from environmental tobacco smoke and wood stoves dominate in settled house dust from Northwestern Ontario First Nations communities. Int J Circumpolar Health 2025; 84:2457786. [PMID: 39854166 PMCID: PMC11770864 DOI: 10.1080/22423982.2025.2457786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Rates of respiratory tract infections for children living in remote First Nations communities in the Sioux Lookout Zone in Northwestern Ontario are elevated and associated with poor indoor environmental quality including high exposures to endotoxin and serious dampness and mould damage. The studies also revealed a high prevalence of cigarette smoking and most houses have wood stoves, of variable quality. Depending on structure, polycyclic aromatic hydrocarbons (PAH) are carcinogens, immunotoxins and/or inflammatory mediators that are byproducts of the incomplete combustion of organic materials. Indoor sources of PAHs include tobacco smoke, cooking, and burning wood and/or fossil fuels for house heating. Twelve PAHs were measured in the <300 µm fraction of settled house dust by GC-MS in 59 houses. Nine PAHs were detected in all 59 houses, and median concentrations of individual PAHs measured ranged from 66 to 804 ng/g. PAHs associated with environmental tobacco smoke and with wood smoke dominated the PAH profile. Limiting tobacco smoking indoors and upgrading to low emission airtight wood stoves would improve indoor air quality and the respiratory health of children in this remote region of Ontario.
Collapse
Affiliation(s)
| | - Anna K. Kirkland
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Irbaz Rehman
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Thomas Kovesi
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Gary Mallach
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
3
|
Ramkissoon C, Song Y, Yen S, Southam K, Page S, Pisaniello D, Gaskin S, Zosky GR. Understanding the pathogenesis of engineered stone-associated silicosis: The effect of particle chemistry on the lung cell response. Respirology 2024; 29:217-227. [PMID: 38043119 DOI: 10.1111/resp.14625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The resurgence of severe and progressive silicosis among engineered stone benchtop industry workers is a global health crisis. We investigated the link between the physico-chemical characteristics of engineered stone dust and lung cell responses to understand components that pose the greatest risk. METHODS Respirable dust from 50 resin-based engineered stones, 3 natural stones and 2 non-resin-based materials was generated and analysed for mineralogy, morphology, metals, resin, particle size and charge. Human alveolar epithelial cells and macrophages were exposed in vitro to dust and assessed for cytotoxicity and inflammation. Principal component analysis and stepwise linear regression were used to explore the relationship between engineered stone components and the cellular response. RESULTS Cutting engineered stone generated fine particles of <600 nm. Crystalline silica was the main component with metal elements such as Ti, Cu, Co and Fe also present. There was some evidence to suggest differences in cytotoxicity (p = 0.061) and IL-6 (p = 0.084) between dust samples. However, IL-8 (CXCL8) and TNF-α levels in macrophages were clearly variable (p < 0.05). Quartz explained 11% of the variance (p = 0.019) in macrophage inflammation while Co and Al accounted for 32% of the variance (p < 0.001) in macrophage toxicity, suggesting that crystalline silica only partly explains the cell response. Two of the reduced-silica, non-engineered stone products induced considerable inflammation in macrophages. CONCLUSION These data suggest that silica is not the only component of concern in these products, highlighting the caution required as alternative materials are produced in an effort to reduce disease risk.
Collapse
Affiliation(s)
- Chandnee Ramkissoon
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Seiha Yen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Katherine Southam
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Simone Page
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Dino Pisaniello
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharyn Gaskin
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
4
|
Liu J, Li H, Guo Z, Xiao X, Viscardi A, Xiang R, Liu H, Lin X, Han J. The changes and correlation of IL-6 and oxidative stress levels in RAW264.7 macrophage cells induced by PAHs in PM 2.5. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:61. [PMID: 38281271 DOI: 10.1007/s10653-023-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Hongqiu Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Angelo Viscardi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Malar DS, Prasanth MI, Verma K, Prasansuklab A, Tencomnao T. Hibiscus sabdariffa Extract Protects HaCaT Cells against Phenanthrene-Induced Toxicity through the Regulation of Constitutive Androstane Receptor/Pregnane X Receptor Pathway. Nutrients 2022; 14:nu14183829. [PMID: 36145217 PMCID: PMC9502750 DOI: 10.3390/nu14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 μM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Department of Parasite-Host Biology, ICMR-National Institute of Malaria Research (NIMR), New Delhi 110077, India
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| |
Collapse
|
6
|
Liu Y, Gong X, Wang J, Wang Y, Zhang Y, Li T, Yan J, Zhou M, Zhang B. Investigation of nickel sulfate-induced cytotoxicity and underlying toxicological mechanisms in human umbilical vein endothelial cells through oxidative stress, inflammation, apoptosis, and MAPK signaling pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:2058-2071. [PMID: 35499276 DOI: 10.1002/tox.23550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Growing evidence indicates that nickle and its compounds have adverse effects on the cardiovascular system. In this study, the cytotoxic insults caused by nickel sulfate (NiSO4 ) in human umbilical vein endothelial cells (HUVECs) were explored by examining cell viability, oxidative stress, inflammation, apoptosis, and MAPK signaling pathway activity. Cultured HUVECs were treated with varying concentrations of NiSO4 (0, 62.5, 250, and 1000 μM) for 24 h. Subsequently, markers of oxidative stress, inflammation, apoptosis, and MAPK signaling pathways were analyzed using biochemical assays, real-time quantitative polymerase chain reaction, and western blot. Rates of apoptosis were evaluated using flow cytometry. The results showed that NiSO4 exerted dose- and time-dependent inhibitory effects on cell growth. It induced oxidative stress and lipid peroxidation by increasing the generation of reactive oxygen species, the oxidized glutathione to reduced glutathione ratio (GSSG/GSH ratio), and malondialdehyde levels. Further, it inhibited superoxide dismutase activity in HUVECs. Flow cytometry analysis results revealed that NiSO4 (62.5-1000 μM) could induce apoptosis in HUVECs. The protein and gene expressions of cleaved Caspase 3 and Bax were elevated, and those of Bcl-2 and Bcl-XL were reduced after NiSO4 treatment. Additionally, NiSO4 triggered inflammation in HUVECs, increasing the protein and mRNA levels of IL-6 and TNF-α and reducing those of TGF-β. Furthermore, western blot findings revealed that NiSO4 could activate MAPK signaling pathways, upregulating p38, JNK, and ERK1/2 in HUVECs by increasing the levels of p-P38,p-JNK, and p-ERK1/2 in a dose-dependent manner. MAPK pathway inhibitors (10 μM SB203580 and 10 μM SP600125) could attenuate the NiSO4 -induced increase in apoptosis and inflammation in HUVECs. They could also attenuate the dysregulation of inflammatory factors and related proteins caused by high-dose NiSO4 exposure. Interestingly, while the MEK inhibitor U0126 (10 μM) enhanced NiSO4 -induced apoptosis in HUVECs, it reduced cell inflammation. Taken together, these experimental results suggest that NiSO4 can inhibit cell growth, induce oxidative stress, and trigger subsequent inflammatory responses and apoptosis in HUVECs. These effects may be mediated by the P38 and JNK MAPK stress response pathways.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xia Gong
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Wang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yongxiang Wang
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Tao Li
- Department of Geratology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Yan
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
León-Jiménez A, Mánuel JM, García-Rojo M, Pintado-Herrera MG, López-López JA, Hidalgo-Molina A, García R, Muriel-Cueto P, Maira-González N, Del Castillo-Otero D, Morales FM. Compositional and structural analysis of engineered stones and inorganic particles in silicotic nodules of exposed workers. Part Fibre Toxicol 2021; 18:41. [PMID: 34809667 PMCID: PMC8607701 DOI: 10.1186/s12989-021-00434-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Engineered stone silicosis is an emerging disease in many countries worldwide produced by the inhalation of respirable dust of engineered stone. This silicosis has a high incidence among young workers, with a short latency period and greater aggressiveness than silicosis caused by natural materials. Although the silica content is very high and this is the key factor, it has been postulated that other constituents in engineered stones can influence the aggressiveness of the disease. Different samples of engineered stone countertops (fabricated by workers during the years prior to their diagnoses), as well as seven lung samples from exposed patients, were analyzed by multiple techniques. RESULTS The different countertops were composed of SiO2 in percentages between 87.9 and 99.6%, with variable relationships of quartz and cristobalite depending on the sample. The most abundant metals were Al, Na, Fe, Ca and Ti. The most frequent volatile organic compounds were styrene, toluene and m-xylene, and among the polycyclic aromatic hydrocarbons, phenanthrene and naphthalene were detected in all samples. Patients were all males, between 26 and 46 years-old (average age: 36) at the moment of the diagnosis. They were exposed to the engineered stone an average time of 14 years. At diagnosis, only one patient had progressive massive fibrosis. After a follow-up period of 8 ± 3 years, four patients presented progressive massive fibrosis. Samples obtained from lung biopsies most frequently showed well or ill-defined nodules, composed of histiocytic cells and fibroblasts without central hyalinization. All tissue samples showed high proportion of Si and Al at the center of the nodules, becoming sparser at the periphery. Al to Si content ratios turned out to be higher than 1 in two of the studied cases. Correlation between Si and Al was very high (r = 0.93). CONCLUSION Some of the volatile organic compounds, polycyclic aromatic hydrocarbons and metals detected in the studied countertop samples have been described as causative of lung inflammation and respiratory disease. Among inorganic constituents, aluminum has been a relevant component within the silicotic nodule, reaching atomic concentrations even higher than silicon in some cases. Such concentrations, both for silicon and aluminum showed a decreasing tendency from the center of the nodule towards its frontier.
Collapse
Affiliation(s)
- Antonio León-Jiménez
- Pulmonology, Allergy and Thoracic Surgery Department, Puerta del Mar University Hospital, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain.
| | - José M Mánuel
- IMEYMAT: University Institute of Research in Electron Microscopy and Materials of the University of Cadiz, Puerto Real, Cádiz, Spain
- Department of Condensed Matter Physics, School of Sciences, University of Cádiz, Puerto Real, Cádiz, Spain
| | - Marcial García-Rojo
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Department of Anatomic Pathology, Puerta del Mar University Hospital, Cádiz, Spain
| | - Marina G Pintado-Herrera
- INMAR: University Research Institute of Marine Research, University of Cádiz, Puerto Real, Cádiz, Spain
- Department of Physical Chemistry, CASEM, University of Cádiz, Puerto Real, Cádiz, Spain
| | - José Antonio López-López
- INMAR: University Research Institute of Marine Research, University of Cádiz, Puerto Real, Cádiz, Spain
- Department of Analytical Chemistry, CASEM, University of Cádiz, Puerto Real, Cádiz, Spain
| | - Antonio Hidalgo-Molina
- Pulmonology, Allergy and Thoracic Surgery Department, Puerta del Mar University Hospital, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Rafael García
- IMEYMAT: University Institute of Research in Electron Microscopy and Materials of the University of Cadiz, Puerto Real, Cádiz, Spain
- Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, School of Sciences, University of Cádiz, Puerto Real, Cádiz, Spain
| | - Pedro Muriel-Cueto
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Department of Anatomic Pathology, Puerta del Mar University Hospital, Cádiz, Spain
| | | | | | - Francisco M Morales
- IMEYMAT: University Institute of Research in Electron Microscopy and Materials of the University of Cadiz, Puerto Real, Cádiz, Spain
- Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, School of Sciences, University of Cádiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
8
|
Guo H, Huang Y, Wang H, Zhang Z, Li C, Hu F, Zhang W, Liu Y, Zeng Y, Wang J. Low molecular weight-PAHs induced inflammation in A549 cells by activating PI3K/AKT and NF-κB signaling pathways. Toxicol Res (Camb) 2021; 10:150-157. [PMID: 33613982 DOI: 10.1093/toxres/tfaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Our previous study has demonstrated that two low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs), phenanthrene (Phe) and fluorene (Flu), alone and as a mixture could induce oxidative damage and inflammation in A549 cells. However, the associated mechanisms have not been well discussed. The aim of this study was to further investigate the roles of PI3K/AKT and NF-κB signaling pathways in the inflammatory effects in A549 cells induced by Phe, Flu and their mixture. The results indicated that Phe, Flu and their mixture significantly activated PI3K/AKT and NF-κB signaling pathways by increasing the phosphorylation levels of PI3K, AKT, IκBα and NF-κB p65. In addition, pro-inflammatory cytokine expressions of TNF-α and IL-6 induced by the binary mixture of Phe and Flu were all alleviated by co-treatment with PI3K/AKT and NF-κB specific inhibitors (LY294002 and BAY11-7082). The results suggested that PI3K/AKT and NF-κB signaling pathways played an important role in LMW-PAHs induced inflammation in A549 cells.
Collapse
Affiliation(s)
- Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, No. 143 Qilihe North Street, Lanzhou 730000, Gansu, China
| | - Zhewen Zhang
- School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| |
Collapse
|