1
|
Akarsu SA, İleritürk M, Küçükler S, Akaras N, Gür C, Kandemir FM. Ameliorative effects of sinapic acid against vancomycin-induced testicular oxidative damage, apoptosis, inflammation, testicular histopathologic disorders and decreased epididymal sperm quality. Reprod Toxicol 2024; 129:108666. [PMID: 39059777 DOI: 10.1016/j.reprotox.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
In this study, it was aimed to determine the effect of sinapic acid (SNP), a polyphenol with antioxidant, anti-inflammatory and antibacterial properties, on testicular damage caused by vancomycin (VCM), a widely used antibiotic against gram positive bacteria. A total of 35 male Sprague Dawley rats were used in the study, divided into five groups: control, VCM, SNP, VCM + SNP 10, and VCM + SNP 20. Following a week of oral administration, the rats were euthanized under sevoflurane anesthesia. While the VCM group had a significant increase in MDA levels, the SNP administration inhibited the increase in MDA levels. VCM led to a significant decrease in GSH levels, SOD, CAT, and GPx activity in the testicular tissue of rats, while SNP administration increased these antioxidant levels. SNP administration decreased the mRNA expression levels of VCM induced Nrf-2, HO-1, and NQO1 in testicular tissue while increasing the levels of MAPK14, MAPK15, JNK, P53, Apaf-1, Caspase-3, Caspase-6, Caspase-9, and Beclin-1 mRNA transcript levels. The VCM group showed a significant increase in Bax and NF-κB levels in testicular tissue, while Bcl-2 levels decreased. VCM significantly decreased sperm motility and increased the percentage of damaged sperm in rats. Histopathological results revealed that VCM caused disruption of basement membranes and disorganization of seminiferous tubules, but SNP administration preserved testicular histology. As a result, VCM increased oxidative stress, apoptosis, and autophagy in the testicular tissue of rats, altered testicular histopathology, and decreased sperm quality, while SNP decreased these effects.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Mustafa İleritürk
- Department of Laboratory and Veterinary Health, Horasan Vocational School, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
2
|
Farzan M, Abedi B, Bhia I, Madanipour A, Farzan M, Bhia M, Aghaei A, Kheirollahi I, Motallebi M, Amini-Khoei H, Ertas YN. Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders. ACS Chem Neurosci 2024; 15:2966-2981. [PMID: 39082749 DOI: 10.1021/acschemneuro.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Atossa Madanipour
- Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Mohammad Bhia
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Iman Kheirollahi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan
| |
Collapse
|
3
|
Sweilam SH, Ali DE, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. A First Metabolite Analysis of Norfolk Island Pine Resin and Its Hepatoprotective Potential to Alleviate Methotrexate (MTX)-Induced Hepatic Injury. Pharmaceuticals (Basel) 2024; 17:970. [PMID: 39065818 PMCID: PMC11279851 DOI: 10.3390/ph17070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-β/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1β and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-β/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt;
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Ali M. Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Aya M. Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Manar M. Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
4
|
Ali SO, Ghaiad HR, Elmasry GF, Mehana NA. Sinapic Acid Mitigates Pentylenetetrazol-induced Acute Seizures By Modulating the NLRP3 Inflammasome and Regulating Calcium/calcineurin Signaling: In Vivo and In Silico Approaches. Inflammation 2024:10.1007/s10753-024-02019-0. [PMID: 38662166 DOI: 10.1007/s10753-024-02019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sinapic acid (SA) is a naturally occurring carboxylic acid found in citrus fruits and cereals. Recent studies have shown that SA has potential anti-seizure properties due to its anti-inflammatory, antioxidant, and anti-apoptotic effects. The present study investigated the neuroprotective role of SA at two different dosages in a pentylenetetrazol (PTZ)-induced acute seizure model. Mice were divided into six groups: normal control, PTZ, SA (20 mg/kg), SA (20 mg/kg) + PTZ, SA (40 mg/kg), and SA (40 mg/kg) + PTZ. SA was orally administered for 21 days, followed by a convulsive dose of intraperitoneal PTZ (50 mg/kg). Seizures were estimated via the Racine scale, and animals were behaviorally tested using the Y-maze. Brain tissues were used to assess the levels of GABA, glutamate, oxidative stress markers, calcium, calcineurin, (Nod)-like receptor protein-3 (NLRP3), interleukin (IL)-1β, apoptosis-associated speck-like protein (ASC), Bcl-2-associated death protein (Bad) and Bcl-2. Molecular docking of SA using a multistep in silico protocol was also performed. The results showed that SA alleviated oxidative stress, restored the GABA/glutamate balance and calcium/calcineurin signaling, downregulated NLRP3 and apoptosis, and improved recognition and ambulatory activity in PTZ-treated mice. In silico results also revealed that SA strongly interacts with the target proteins NLRP3 and ASC. Overall, the results suggest that SA is a promising antiseizure agent and that both doses of SA are comparable, with 40 mg/kg SA being superior in normalizing glutathione, calcium and IL-1β, in addition to calcineurin, NLRP3, ASC and Bad.
Collapse
Affiliation(s)
- Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Noha A Mehana
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
6
|
Dwivedi PSR, Shastry CS. System biology mediated assessment of molecular mechanism for sinapic acid against breast cancer: via network pharmacology and molecular dynamic simulation. Sci Rep 2023; 13:21982. [PMID: 38081857 PMCID: PMC10713517 DOI: 10.1038/s41598-023-47901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Sinapic acid is a hydroxycinnamic acid widespread in the plant kingdom, known to be a potent anti-oxidant used for the treatment of cancer, infections, oxidative stress, and inflammation. However, the mode of action for its chemotherapeutic properties has yet not been unleashed. Hence, we aimed to identify potential targets to propose a possible molecular mechanism for sinapic acid against breast cancer. We utilized multiple system biology tools and databases like DisGeNET, DIGEP-Pred, Cytoscape, STRING, AutoDock 4.2, AutoDock vina, Schrodinger, and gromacs to predict a probable molecular mechanism for sinapic acid against breast cancer. Targets for the disease breast cancer, were identified via DisGeNET database which were further matched with proteins predicted to be modulated by sinapic acid. In addition, KEGG pathway analysis was used to identify pathways; a protein-pathway network was constructed via Cytoscape. Molecular docking was performed using three different algorithms followed by molecular dynamic simulations and MMPBSA analysis. Moreover, cluster analysis and gene ontology (GO) analysis were performed. A total of 6776 targets were identified for breast cancer; 95.38% of genes predicted to be modulated by sinapic acid were common with genes of breast cancer. The 'Pathways in cancer' was predicted to be modulated by most umber of proteins. Further, PRKCA, CASP8, and CTNNB1 were predicted to be the top 3 hub genes. In addition, molecular docking studies revealed CYP3A4, CYP1A1, and SIRT1 to be the lead proteins identified from AutoDock 4.2, AutoDock Vina, and Schrodinger suite Glide respectively. Molecular dynamic simulation and MMPBSA were performed for the complex of sinapic acid with above mentioned proteins which revealed a stable complex throughout simulation. The predictions revealed that the mechanism of sinapic acid in breast cancer may be due to regulation of multiple proteins like CTNNB1, PRKCA, CASP8, SIRT1, and cytochrome enzymes (CYP1A1 & CYP3A4); the majorly regulated pathway was predicted to be 'Pathways in cancer'. This indicates the rationale for sinapic acid to be used in the treatment of breast cancer. However, these are predictions and need to be validated and looked upon in-depth to confirm the exact mechanism of sinapic acid in the treatment of breast cancer; this is future scope as well as a drawback of the current study.
Collapse
Affiliation(s)
- Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| | - C S Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
7
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
8
|
Dang R, Guan H, Wang C. Sinapis Semen: A review on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics. Front Pharmacol 2023; 14:1113583. [PMID: 37124205 PMCID: PMC10130658 DOI: 10.3389/fphar.2023.1113583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Sinapis Semen (SS), the dried mature seed of Sinapis alba L. and Brassica juncea (L.) Czern. et Coss., is one of the traditional Chinese medicinal materials with a wide range of pharmacological effects being used for asthma, cough and many other ailments. SS is also widely used in food agriculture, medicine and other industries in North America and South Asia. More recently, the research on SS has gradually intensified and increased. However, there is no systematic review of SS. In this review, through literature exploration and analysis, the research advance on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics of SS was aggregated initially. Total 144 compounds have been isolated and identified from SS. Among them, glucosinolates and their hydrolysates and volatile oils are the main active ingredients and important chemical classification markers. SS has a wide range of pharmacological effects, especially in cough suppressing, asthma calming, anti-inflammatory, neuroprotective, cardiovascular protective, inhibiting androgenic effects, anti-tumor, and skin permeation promoting effects. Sinapine and sinapic acid are the main active ingredients of SS for its medicinal effects. However, SS has a strong skin irritation, presumably related to the time of application, the method of processing, and original medicinal plants. This review will provide useful data for the follow-up research and safe and reasonable clinical application of SS.
Collapse
|
9
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
10
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
11
|
Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation. Mol Biol Rep 2022; 49:4179-4191. [DOI: 10.1007/s11033-022-07251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
|
12
|
Yu XF, Zhou ZL, Lu XD, Long SQ. Hepatoprotective effect of naringenin in rats with alcoholic liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1334-1340. [DOI: 10.11569/wcjd.v29.i23.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown that naringenin (Nar) can play a protective role in animal models with acute liver injury, but its role in alcoholic liver disease (ALD) remains unclear.
AIM To explore the effect of Nar on ALD rats and the possible mechanism involved.
METHODS Forty Sprague-Dawley rats were randomly divided into a control group, model group, low-dose Nar group, and high-dose Nar group, with 10 rats in each group. A rat model of ALD was generated by alcohol induction. Blood samples and liver tissues were collected at the end of the regimen. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were determined with an automatic biochemical analyzer. The morphology of the liver was observed by HE staining. Glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and reactive oxygen species (ROS) production level in the liver were determined with commercial kits. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in liver tissues were detected by immunohistochemical staining. The expression levels of Nrf-2, HO-1, and p-NF-κB P65 in liver tissues were detected by Western blot.
RESULTS Compared with the model group, the levels of AST and AST in serum of rats in the low- and high-dose Nar groups were significantly decreased, the activities of SOD and GPx and the expression levels of Nrf-2 and HO-1 in liver tissue were significantly increased, and MDA content, ROS level, and TNF-α, IL-6, and p-NF-κB P65 expression levels were significantly decreased, especially in the high-dose group.
CONCLUSION Nar can alleviate liver injury in ALD rats, and this effect may be related to the reduction of oxidative stress and inflammatory response in liver tissue.
Collapse
Affiliation(s)
- Xiu-Feng Yu
- Zhejiang Chinese Medical University, Hangzhou 310051, Zhejiang Province, China,Department of Emergency Medicine, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Zeng-Li Zhou
- Department of Gastroenterology, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Xu-Dong Lu
- Department of Emergency Medicine, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Si-Qin Long
- Department of Infectious Diseases, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
13
|
Protective effects of melatonin and L-carnitine against methotrexate-induced toxicity in isolated rat hepatocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:87-97. [PMID: 34821957 DOI: 10.1007/s00210-021-02176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to evaluate the possible protective effects of melatonin (MEL) and/or L-carnitine (L-CAR) against methotrexate (MTX)-induced toxicity in isolated rat hepatocytes. Hepatocytes were prepared using collagenase techniques of perfusion and digestion of rat liver. Trypan blue uptake, as well as, glutathione (GSH), lipid peroxidation (LPO), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α) levels were measured. Caspase-3 activity was also assessed. Pre-incubation of hepatocytes with MEL (1 mM) and/or L-CAR (10 mM) 30 min prior to intoxication with MTX, significantly protected hepatocytes against toxicity. In addition, LPO, NO, TNF-α levels, and caspase-3 activity were decreased in comparison to the MTX-intoxicated group. Furthermore, the two drugs increased the MTX-depleted GSH level. MEL and L-CAR prevented MTX-induced hepatocytotoxicity, at least partly, by their antioxidative, antiinflammatory, and antiapoptotic effects. Further studies are recommended on the clinical pharmacologic and toxicologic effects of MEL and L-CAR in patients receiving MTX.
Collapse
|