1
|
Wu W, Fu Y, Li H, Xiang Y, Zeng Y, Cai J, Dong Z. GALNT3 in Ischemia-Reperfusion Injury of the Kidney. J Am Soc Nephrol 2024:00001751-990000000-00463. [PMID: 39446490 DOI: 10.1681/asn.0000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Key Points
N-acetylgalactosaminyltransferase-3 (GALNT3) was downregulated in both ischemic AKI and cisplatin nephrotoxicity.GALNT3 played a protective role in renal tubular cells, and its downregulation contributed to AKI.Mechanistically, GALNT3 protected kidney tubular cells at least partially through O-glycosylation of EGF receptor.
Background
Damages to subcellular organelles, such as mitochondria and endoplasmic reticulum, are well recognized in tubular cell injury and death in AKI. However, the changes and involvement of Golgi apparatus are much less known. In this study, we report the regulation and role of N-acetylgalactosaminyltransferase-3 (GALNT3), a key enzyme for protein glycosylation in Golgi apparatus, in AKI.
Methods
AKI was induced in mice by renal ischemia–reperfusion injury or cisplatin. In vitro, rat kidney proximal tubular cells were subjected to hypoxia/reoxygenation (H/R) injury. To determine the role of GALNT3, its specific inhibitor T3inh-1 was tested in mice, and the effects of GALNT3 overexpression as well as knockdown were examined in the rat renal proximal tubular cells. EGF receptor (EGFR) activation was induced by recombinant EGF or by overexpressing EGFR.
Results
GALNT3 was significantly decreased in both in vivo and in vitro models of AKI induced by renal ischemia–reperfusion injury and cisplatin. T3Inh-1, a specific GALNT3 inhibitor, exacerbated ischemic AKI and suppressed tubular cell proliferation in mice. Moreover, knockdown of GALNT3 increased apoptosis during H/R treatment in rat renal proximal tubular cells, whereas overexpression of GALNT3 attenuated H/R-induced apoptosis, further supporting a protective role of GALNT3. Mechanistically, GALNT3 contributed to O-glycosylation of EGFR and associated EGFR signaling. Activation or overexpression of EGFR suppressed the proapoptotic effect of GALNT3 knockdown in H/R-treated rat renal proximal tubular cells.
Conclusions
GALNT3 protected kidney tubular cells in AKI at least partially through O-glycosylation of EGFR.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
2
|
Yang F, Yan L, Ji J, Lou Y, Zhu J. HER2 puzzle pieces: Non-Coding RNAs as keys to mechanisms, chemoresistance, and clinical outcomes in Ovarian cancer. Pathol Res Pract 2024; 258:155335. [PMID: 38723327 DOI: 10.1016/j.prp.2024.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer (OC) presents significant challenges, characterized by limited treatment options and therapy resistance often attributed to dysregulation of the HER2 signaling pathway. Non-coding RNAs (ncRNAs) have emerged as key players in regulating gene expression in OC. This comprehensive review underscores the pivotal role of ncRNAs in modulating HER2 signaling, with a specific focus on their mechanisms, impact on chemoresistance, and prognostic/diagnostic implications. MicroRNAs, long non-coding RNAs, and circular RNAs have been identified as essential regulators in the modulation of the HER2 pathway. By directly targeting key components of the HER2 axis, these ncRNAs influence its activation and downstream signaling cascades. Dysregulated ncRNAs have been closely associated with chemoresistance, leading to treatment failures and disease progression in OC. Furthermore, distinct expression profiles of ncRNAs hold promise as reliable prognostic and diagnostic markers, facilitating personalized treatment strategies and enhancing disease outcome assessments. A comprehensive understanding of how ncRNAs intricately modulate HER2 signaling is imperative for the development of targeted therapies and the improvement of patient outcomes. The integration of ncRNA profiles into clinical practice has the potential to enhance prognostic and diagnostic accuracy in the management of ovarian cancer. Further research efforts are essential to validate the clinical utility of ncRNAs and elucidate their precise roles in the regulation of HER2 signaling. In conclusion, ncRNAs play a crucial role in governing HER2 signaling in ovarian cancer, impacting chemoresistance and providing valuable prognostic and diagnostic insights. The exploration of ncRNA-mediated HER2 modulation offers promising avenues for the development of personalized treatment approaches, ultimately advancing patient care and outcomes in OC.
Collapse
Affiliation(s)
- Fangwei Yang
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China.
| | - Lixiang Yan
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Junnan Ji
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Yunxia Lou
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Jinlu Zhu
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| |
Collapse
|
3
|
Jiang L, Liu Y, Liu M, Zheng Y, Chen L, Shan F, Ji J, Cao Y, Kai H, Kang X. REG3A promotes proliferation and DDP resistance of ovarian cancer cells by activating the PI3K/Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:85-96. [PMID: 37665173 DOI: 10.1002/tox.23952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/15/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
This study explored the effect of Regenerating Islet-Derived 3-Alpha (REG3A) on ovarian cancer (OC) progression. REG3A expression was scrutinized in clinical tissues of 97 OC cases by quantitative real-time polymerase chain reaction (qRT-PCR). REG3A expression in OC cells and cisplatin (DDP) resistance OC cells was regulated by transfection. LY294002 (10 μM, inhibitor of the PI3K/Akt signaling pathway) was used to treat OC cells and DDP resistance OC cells. Cell counting kit-8 and methyl-thiazolyl-tetrazolium assays were applied for proliferation and DDP resistance detection. Flow cytometry was utilized for cell cycle and apoptosis analysis. The effect of REG3A on the OC cell in vivo growth was researched by establishing xenograft tumor model via using nude mice using nude mice. The expression of genes in clinical samples, cells and xenograft tumor tissues was investigated by qRT-PCR, Western blot and immunohistochemistry. As a result, REG3A was over-expressed in OC patients and cells, associating with dismal prognosis of patients. REG3A knockdown repressed proliferation, DDP resistance, induced cell cycle arrest and apoptosis of OC cells, and reduced the expression MDR-1, Cyclin D1, Cleaved caspase 3 proteins and the PI3K/Akt signaling pathway activity in OC cells. LY294002 treatment abrogated the promotion effect of REG3A on OC cell proliferation, apoptosis inhibition and DDP resistance. REG3A knockdown suppressed the in vivo growth of OC cells. Thus, REG3A promoted proliferation and DDP resistance of OC cells by activating the PI3K/Akt signaling pathway. REG3A might be a promising target for the clinical treatment of OC.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Manhua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Feng Shan
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jinlong Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Haili Kai
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
4
|
Chen S, Zhang A, Li N, Wu H, Li Y, Liu S, Yan Q. Elevated high-mannose N-glycans hamper endometrial decidualization. iScience 2023; 26:108170. [PMID: 37915610 PMCID: PMC10616321 DOI: 10.1016/j.isci.2023.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Decidualization of endometrial stromal cells is a hallmark of endometrial receptivity for embryo implantation, and dysfunctional decidualization is associated with pregnancy failure. Protein glycosylation is an important posttranslational modification that affects the structure and function of glycoproteins. Our results showed that high-mannose epitopes were elevated in the decidual tissues of miscarriage patients compared with early pregnant women by Lectin microarray. Furthermore, the level of mannosyl-oligosaccharide α-1,2 mannosidase IA (MAN1A1), a key enzyme for high-mannose glycan biosynthesis, was decreased in the decidual tissues of miscarriage patients. Screening of lncRNAs showed that lncNEAT1 level was increased in the serum and decidua of miscarriage patients, and negatively correlated with MAN1A1 expression. The results also revealed that specific binding of lncNEAT1 with nucleophosmin (NPM1)-SP1 transcription complex inhibited MAN1A1 expression and hampered endometrial decidualization and embryo implantation potential. The study suggests the new insights into the function of high-mannose glycans/MAN1A1 modification during endometrial decidualization.
Collapse
Affiliation(s)
- Siyi Chen
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Aihui Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Na Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Hongpan Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yaqi Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Kan L, Yang M, Zhang H. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis. Biol Direct 2023; 18:36. [PMID: 37403106 PMCID: PMC10318671 DOI: 10.1186/s13062-023-00392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Yang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
6
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
7
|
Ma L, Zhang H, Liu C, Liu M, Shangguan F, Liu Y, Yang S, Li H, An J, Song S, Cao Q, Qu G. A novel mechanism of cannabidiol in suppressing ovarian cancer through LAIR-1 mediated mitochondrial dysfunction and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1118-1132. [PMID: 36810933 DOI: 10.1002/tox.23752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear. We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1. In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action. In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Fungal Laboratory, Jining First People's Hospital, Jining, Shandong Province, China
| | - Huachang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Chuntong Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Mengke Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Yantai Key Laboratory of Sports Injury and Rehabilitation, Health Commission of Shandong Province of Medicine and Health Key Laboratory of Sports Injury and Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai, Shandong Province, China
| | - Hua Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| | - Qizhi Cao
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| |
Collapse
|
8
|
Wang X, Sun M, Gao Z, Yin L, Pu Y, Zhu Y, Wang X, Liu R. N-nitrosamines-mediated downregulation of LncRNA-UCA1 induces carcinogenesis of esophageal squamous by regulating the alternative splicing of FGFR2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158918. [PMID: 36169023 DOI: 10.1016/j.scitotenv.2022.158918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 05/05/2023]
Abstract
Concerns are raised over the risk to digestive system's tumors from the N-nitrosamines (NAs) exposure in drinking water. Albeit considerable studies are conducted to explore the underlying mechanism responsible for NAs-induced esophageal squamous cell carcinoma (ESCC), the exact molecular mechanisms remain largely unknown, especially at the epigenetic regulation level. In this study, it is revealed that the urinary concentration of N-Nitrosodiethylamine is higher in high incidence area of ESCC, and the lncRNA-UCA1(UCA1) is significantly decreased in ESCC tissues. In vitro and in vivo experiments further show that UCA1 is involved in the malignant transformation of Het-1A cells and precancerous lesions of the rat esophagus induced by N-nitrosomethylbenzylamine (NMBzA). Functional gain and loss experiments verify UCA1 can affect the proliferation, migration, and invasion of ESCC cells in vitro and in vivo. Mechanically, through binding to heterogeneous nuclear ribonucleoprotein F (hnRNP F) protein, UCA1 regulates alternative splicing of fibroblast growth factor receptor 2 (FGFR2), which promotes the FGFR2IIIb isoform switching to FGFR2 IIIc isoform, and the latter activates epithelial-mesenchymal transition via PI3K-AKT signaling pathways impacting tumorigenesis. Therefore, NAs-mediated downregulation of UCA1 promotes ESCC progression through targeting hnRNP F/FGFR2/PI3k-AKT axis, which provides a new chemical carcinogenic target and establishes a previously unknown mechanism for NAs-induced ESCC.
Collapse
Affiliation(s)
- Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Xiaobin Wang
- Laboratory Animal Center, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
10
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
11
|
Zhou F, Ma J, Zhu Y, Wang T, Yang Y, Sun Y, Chen Y, Song H, Huo X, Zhang J. The role and potential mechanism of O-Glycosylation in gastrointestinal tumors. Pharmacol Res 2022; 184:106420. [PMID: 36049664 DOI: 10.1016/j.phrs.2022.106420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 10/15/2022]
Abstract
Glycosylation is a critical post-translational modification (PTM) that affects the function of proteins and regulates cell signaling, thereby regulating various biological processes. Protein oxygen-N-acetylglucosamine (O-GlcNAc) glycosylation modifications are glycochemical modifications that occur within cells in the signal transduction and are frequently found in the cytoplasm and nucleus. Due to the rapid and reversible addition and removal, O-GlcNAc modifications are able to reversibly compete with certain phosphorylation modifications, immediately regulate the activity of proteins, and participate in kinds of cellular metabolic and signal transduction pathways, playing a pivotal role in the regulation of tumors, diabetes, and other diseases. This article provided a brief overview of O-GlcNAc glycosylation modification, introduced its role in altering the progression and immune response regulation of gastrointestinal tumors, and discussed its potential use as a marker of tumor neogenesis.
Collapse
Affiliation(s)
- Feinan Zhou
- The department of Spleen and Stomach Diseases of Cadres Healthcare Centre, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yongfu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Tianming Wang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yue Yang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yehan Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Youmou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong Province 510799, China.
| |
Collapse
|
12
|
OUP accepted manuscript. Glycobiology 2022; 32:556-579. [DOI: 10.1093/glycob/cwac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
|